INFRASTRUCTURE SYSTEMS CONFERENCE


Infrastructure Systems Conference is one of the leading research topics in the international research conference domain. Infrastructure Systems is a conference track under the Architecture and Urban Planning Conference which aims to bring together leading academic scientists, researchers and research scholars to exchange and share their experiences and research results on all aspects of Architecture and Urban Planning.

internationalconference.net provides a premier interdisciplinary platform for researchers, practitioners and educators to present and discuss the most recent innovations, trends, and concerns as well as practical challenges encountered and solutions adopted in the fields of (Architecture and Urban Planning).

Infrastructure Systems is not just a call for academic papers on the topic; it can also include a conference, event, symposium, scientific meeting, academic, or workshop.

You are welcome to SUBMIT your research paper or manuscript to Infrastructure Systems Conference Track will be held at “Architecture and Urban Planning Conference in New York, United States in October 2019” - “Architecture and Urban Planning Conference in Rome, Italy in December 2019” - “Architecture and Urban Planning Conference in London, United Kingdom in February 2020” - “Architecture and Urban Planning Conference in Barcelona, Spain in April 2020” - “Architecture and Urban Planning Conference in Istanbul, Turkey in May 2020” .

Infrastructure Systems is also a leading research topic on Google Scholar, Semantic Scholar, Zenedo, OpenAIRE, BASE, WorldCAT, Sherpa/RoMEO, Elsevier, Scopus, Web of Science.

IV. INTERNATIONAL ARCHITECTURE AND URBAN PLANNING CONFERENCE

OCTOBER 08 - 09, 2019
NEW YORK, UNITED STATES

V. INTERNATIONAL ARCHITECTURE AND URBAN PLANNING CONFERENCE

DECEMBER 12 - 13, 2019
ROME, ITALY

VI. INTERNATIONAL ARCHITECTURE AND URBAN PLANNING CONFERENCE

FEBRUARY 13 - 14, 2020
LONDON, UNITED KINGDOM

VII. INTERNATIONAL ARCHITECTURE AND URBAN PLANNING CONFERENCE

APRIL 15 - 16, 2020
BARCELONA, SPAIN

VIII. INTERNATIONAL ARCHITECTURE AND URBAN PLANNING CONFERENCE

MAY 11 - 12, 2020
ISTANBUL, TURKEY

  • Abstracts/Full-Text Paper Submission Deadline October 01, 2019
  • Notification of Acceptance/Rejection Deadline October 21, 2019
  • Final Paper and Early Bird Registration Deadline April 01, 2020
  • CONFERENCE CODE: 20AUPC05TR
  • One Time Submission Deadline Reminder
FINISHED

I. INTERNATIONAL ARCHITECTURE AND URBAN PLANNING CONFERENCE

MARCH 19 - 20, 2019
ISTANBUL, TURKEY

FINISHED

III. INTERNATIONAL ARCHITECTURE AND URBAN PLANNING CONFERENCE

AUGUST 21 - 22, 2019
LONDON, UNITED KINGDOM

Architecture and Urban Planning Conference Call For Papers are listed below:

Previously Published Papers on "Infrastructure Systems Conference"

  • Experimental Investigation of Cold-Formed Steel-Timber Board Composite Floor Systems
    Authors: Samar Raffoul, Martin Heywood, Dimitrios Moutaftsis, Michael Rowell, Keywords: Cold formed steel joists, composite action, flooring systems, shear connection. DOI:10.5281/zenodo. Abstract: This paper comprises an experimental investigation into the structural performance of cold formed steel (CFS) and timber board composite floor systems. The tests include a series of small-scale pushout tests and full-scale bending tests carried out using a refined loading system to simulate uniformly distributed constant load. The influence of connection details (screw spacing and adhesives) on floor performance was investigated. The results are then compared to predictions from relevant existing models for composite floor systems. The results of this research demonstrate the significant benefits of considering the composite action of the boards in floor design. Depending on connection detail, an increase in flexural stiffness of up to 40% was observed in the floor system, when compared to designing joists individually.
  • Intelligent Parking Systems for Quasi-Close Communities
    Authors: Ayodele Adekunle Faiyetole, Olumide Olawale Jegede, Keywords: Intelligent parking systems, localized intelligent parking system, intelligent transport systems, advanced traffic management systems, infrastructure-to-drivers communication. DOI:10.5281/zenodo. Abstract: This paper presents the experimental design and needs justifications for a localized intelligent parking system (L-IPS), ideal for quasi-close communities with increasing vehicular volume that depends on limited or constant parking facilities. For a constant supply in parking facilities, the demand for an increasing vehicular volume could lead to poor time conservation or extended travel time, traffic congestion or impeded mobility, and safety issues. Increased negative environmental and economic externalities are other associated and consequent downsides of disparities in demand and supply. This L-IPS is designed using a microcontroller, ultrasonic sensors, LED indicators, such that the current status, in terms of parking spots availability, can be known from the main entrance to the community or a parking zone on a LCD screen. As an advanced traffic management system (ATMS), the L-IPS is designed to resolve aspects of infrastructure-to-driver (I2D) communication and parking detection issues. Thus, this L-IPS can act as a timesaver for users by helping them know the availability of parking spots. Providing on-time, informed routing, to a next preference or seamless moving to berth on the available spot on a proximate facility as the case may be. Its use could also increase safety and increase mobility, and fuel savings and costs, therefore, reducing negative environmental and economic externalities due to transportation systems.
  • Tokyo Skyscrapers: Technologically Advanced Structures in Seismic Areas
    Authors: J. Szolomicki, H. Golasz-Szolomicka, Keywords: Core structure, damping systems, high-rise buildings. DOI:10.5281/zenodo.2643914 Abstract: The architectural and structural analysis of selected high-rise buildings in Tokyo is presented in this paper. The capital of Japan is the most densely populated city in the world and moreover is located in one of the most active seismic zones. The combination of these factors has resulted in the creation of sophisticated designs and innovative engineering solutions, especially in the field of design and construction of high-rise buildings. The foreign architectural studios (as, for Jean Nouvel, Kohn Pedesen Associates, Skidmore, Owings & Merill) which specialize in the designing of skyscrapers, played a major role in the development of technological ideas and architectural forms for such extraordinary engineering structures. Among the projects completed by them, there are examples of high-rise buildings that set precedents for future development. An essential aspect which influences the design of high-rise buildings is the necessity to take into consideration their dynamic reaction to earthquakes and counteracting wind vortices. The need to control motions of these buildings, induced by the force coming from earthquakes and wind, led to the development of various methods and devices for dissipating energy which occur during such phenomena. Currently, Japan is a global leader in seismic technologies which safeguard seismic influence on high-rise structures. Due to these achievements the most modern skyscrapers in Tokyo are able to withstand earthquakes with a magnitude of over seven degrees at the Richter scale. Damping devices applied are of a passive, which do not require additional power supply or active one which suppresses the reaction with the input of extra energy. In recent years also hybrid dampers were used, with an additional active element to improve the efficiency of passive damping.
  • Proposal of Blue and Green Infrastructure for the Jaguaré Stream Watershed, São Paulo, Brazil
    Authors: Juliana C. Alencar, Monica Ferreira do Amaral Porto, Keywords: Blue and green infrastructure, sustainable drainage, urban waters, ecosystem services. DOI:10.5281/zenodo.2643531 Abstract: The blue-green infrastructure in recent years has been pointed out as a possibility to increase the environmental quality of watersheds. The regulation ecosystem services brought by these areas are many, such as the improvement of the air quality of the air, water, soil, microclimate, besides helping to control the peak flows and to promote the quality of life of the population. This study proposes a blue-green infrastructure scenario for the Jaguaré watershed, located in the western zone of the São Paulo city in Brazil. Based on the proposed scenario, it was verified the impact of the adoption of the blue and green infrastructure in the control of the peak flow of the basin, the benefits for the avifauna that are also reflected in the flora and finally, the quantification of the regulation ecosystem services brought by the adoption of the scenario proposed. A survey of existing green areas and potential areas for expansion and connection of these areas to form a network in the watershed was carried out. Based on this proposed new network of green areas, the peak flow for the proposed scenario was calculated with the help of software, ABC6. Finally, a survey of the ecosystem services contemplated in the proposed scenario was made. It was possible to conclude that the blue and green infrastructure would provide several regulation ecosystem services for the watershed, such as the control of the peak flow, the connection frame between the forest fragments that promoted the environmental enrichment of these fragments, improvement of the microclimate and the provision of leisure areas for the population.
  • Designing a Pre-Assessment Tool to Support the Achievement of Green Building Certifications
    Authors: Jisun Mo, Paola Boarin, Keywords: Barriers, certification process, green building rating systems, pre-assessment tool. DOI:10.5281/zenodo.1474783 Abstract: The impact of common buildings on climate and environment has prompted people to get involved in the green building standards aimed at implementing rating tools or certifications. Thus, green building rating systems were introduced to the construction industry, and the demand for certified green buildings has increased gradually and succeeded considerably in enhancing people’s environmental awareness. However, the existing certification process has been unsatisfactory in attracting stakeholders and/or professionals who are actively engaged in adopting a rating system. It is because they have faced recurring barriers regarding limited information in understanding the rating process, time-consuming procedures and higher costs, which have a direct influence on pursuing green building rating systems. To promote the achievement of green building certifications within the building industry more successfully, this paper aims at designing a Pre-Assessment Tool (PAT) framework that can help stakeholders and/or professionals engaged in the construction industry to clarify their basic knowledge, timeframe and extra costs needed to activate a green building certification. First, taking the first steps towards the rating tool seems to be complicated because of upfront commitment to understanding the overall rating procedure is required. This conceptual PAT framework can increase basic knowledge of the rating tool and the certification process, mainly in terms of all resources or information of each credit requirements. Second, the assessment process of rating tools is generally known as a “lengthy and time-consuming system”, contributing to unenthusiastic reactions concerning green building projects. The proposed framework can predict the timeframe needed to identify how long it will take for a green project to process each credit requirement and the documentation required from the beginning of the certification process to final approval. Finally, most people often have the initial perception that pursuing green building certification costs more than constructing a non-green building, which makes it more difficult to execute rating tools. To overcome this issue, this PAT will help users to estimate the extra expenses such as certification fees and third-party contributions based on the track of the amount of time it takes to implement the rating tool throughout all the related stages. Also, it can prevent unexpected or hidden costs occurring in the process of assessment. Therefore, this proposed PAT framework can be recommended as an effective method to support the decision-making of inexperienced users and play an important role in promoting green building certification.
  • Development of Numerical Model to Compute Water Hammer Transients in Pipe Flow
    Authors: Jae-Young Lee, Woo-Young Jung, Myeong-Jun Nam, Keywords: Water hammer, hydraulic transient, pipe systems, characteristics method. DOI:10.5281/zenodo.1317388 Abstract: Water hammer is a hydraulic transient problem which is commonly encountered in the penstocks of hydropower plants. The numerical model was developed to estimate the transient behavior of pressure waves in pipe systems. The computational algorithm was proposed to model the water hammer phenomenon in a pipe system with pump shutdown at midstream and sudden valve closure at downstream. To predict the pressure head and flow velocity as a function of time as a result of rapidly closing a valve and pump shutdown, two boundary conditions at the ends considering pump operation and valve control can be implemented as specified equations of the pressure head and flow velocity based on the characteristics method. It was shown that the effects of transient flow make it determine the needs for protection devices, such as surge tanks, surge relief valves, or air valves, at various points in the system against overpressure and low pressure. It produced reasonably good performance with the results of the proposed transient model for pipeline systems. The proposed numerical model can be used as an efficient tool for the safety assessment of hydropower plants due to water hammer.
  • The Performance of Natural Light by Roof Systems in Cultural Buildings
    Authors: Ana Paula Esteves, Diego S. Caetano, Louise L. B. Lomardo, Keywords: Natural lighting, roof lighting systems, natural lighting in museums, comfort lighting. DOI:10.5281/zenodo.1317280 Abstract: This paper presents an approach to the performance of the natural lighting, when the use of appropriated solar lighting systems on the roof is applied in cultural buildings such as museums and foundations. The roofs, as a part of contact between the building and the external environment, require special attention in projects that aim at energy efficiency, being an important element for the capture of natural light in greater quantity, but also for being the most important point of generation of photovoltaic solar energy, even semitransparent, allowing the partial passage of light. Transparent elements in roofs, as well as superior protection of the building, can also play other roles, such as: meeting the needs of natural light for the accomplishment of the internal tasks, attending to the visual comfort; to bring benefits to the human perception and about the interior experience in a building. When these resources are well dimensioned, they also contribute to the energy efficiency and consequent character of sustainability of the building. Therefore, when properly designed and executed, a roof light system can bring higher quality natural light to the interior of the building, which is related to the human health and well-being dimension. Furthermore, it can meet the technologic, economic and environmental yearnings, making possible the more efficient use of that primordial resource, which is the light of the Sun. The article presents the analysis of buildings that used zenith light systems in search of better lighting performance in museums and foundations: the Solomon R. Guggenheim Museum in the United States, the Iberê Camargo Foundation in Brazil, the Museum of Fine Arts in Castellón in Spain and the Pinacoteca of São Paulo.
  • Development of a Roadmap for Assessment the Sustainability of Buildings in Saudi Arabia Using Building Information Modeling
    Authors: Ibrahim A. Al-Sulaihi, Khalid S. Al-Gahtani, Abdullah M. Al-Sugair, Aref A. Abadel, Keywords: Green buildings, sustainability, BIM, rating systems, environment, Saudi Arabia. DOI:10.5281/zenodo.1316843 Abstract: Achieving environmental sustainability is one of the important issues considered in many countries’ vision. Green/Sustainable building is widely used terminology for describing a friendly environmental construction. Applying sustainable practices has a significant importance in various fields, including construction field that consumes an enormous amount of resource and causes a considerable amount of waste. The need for sustainability is increased in the regions that suffering from the limitation of natural resource and extreme weather conditions such as Saudi Arabia. Since buildings designs are getting sophisticated, the need for tools, which support decision-making for sustainability issues, is increasing, especially in the design and preconstruction stages. In this context, Building Information Modeling (BIM) can aid in performing complex building performance analyses to ensure an optimized sustainable building design. Accordingly, this paper introduces a roadmap towards developing a systematic approach for presenting the sustainability of buildings using BIM. The approach includes set of main processes including; identifying the sustainability parameters that can be used for sustainability assessment in Saudi Arabia, developing sustainability assessment method that fits the special circumstances in the Kingdom, identifying the sustainability requirements and BIM functions that can be used for satisfying these requirements, and integrating these requirements with identified functions. As a result, the sustainability-BIM approach can be developed which helps designers in assessing the sustainability and exploring different design alternatives at the early stage of the construction project.
  • Integrated Mass Rapid Transit System for Smart City Project in Western India
    Authors: Debasis Sarkar, Jatan Talati, Keywords: Mass rapid transit systems, smart city, metro rail, bus rapid transit system, multiple linear regression, smart card, automated fare collection system. DOI:10.5281/zenodo.1316772 Abstract: This paper is an attempt to develop an Integrated Mass Rapid Transit System (MRTS) for a smart city project in Western India. Integrated transportation is one of the enablers of smart transportation for providing a seamless intercity as well as regional level transportation experience. The success of a smart city project at the city level for transportation is providing proper integration to different mass rapid transit modes by way of integrating information, physical, network of routes fares, etc. The methodology adopted for this study was primary data research through questionnaire survey. The respondents of the questionnaire survey have responded on the issues about their perceptions on the ways and means to improve public transport services in urban cities. The respondents were also required to identify the factors and attributes which might motivate more people to shift towards the public mode. Also, the respondents were questioned about the factors which they feel might restrain the integration of various modes of MRTS. Furthermore, this study also focuses on developing a utility equation for respondents with the help of multiple linear regression analysis and its probability to shift to public transport for certain factors listed in the questionnaire. It has been observed that for shifting to public transport, the most important factors that need to be considered were travel time saving and comfort rating. Also, an Integrated MRTS can be obtained by combining metro rail with BRTS, metro rail with monorail, monorail with BRTS and metro rail with Indian railways. Providing a common smart card to transport users for accessing all the different available modes would be a pragmatic solution towards integration of the available modes of MRTS.
  • Development of a Value Evaluation Model of Highway Box-Girder Bridge
    Authors: Hao Hsi Tseng, Keywords: Box girder bridge, deterioration, infrastructure, maintenance, value evaluation. DOI:10.5281/zenodo.1314526 Abstract: Taiwan’s infrastructure is gradually deteriorating, while resources for maintenance and replacement are increasingly limited, raising the urgent need for methods for maintaining existing infrastructure within constrained budgets. Infrastructure value evaluation is used to enhance the efficiency of infrastructure maintenance work, allowing administrators to quickly assess the maintenance needs and performance by observing variation in infrastructure value. This research establishes a value evaluation model for Taiwan’s highway box girder bridges. The operating mechanism and process of the model are illustrated in a practical case.