ARCHITECTURAL STRUCTURES CONFERENCE


Architectural Structures Conference is one of the leading research topics in the international research conference domain. Architectural Structures is a conference track under the Architecture and Urban Planning Conference which aims to bring together leading academic scientists, researchers and research scholars to exchange and share their experiences and research results on all aspects of Architecture and Urban Planning.

internationalconference.net provides a premier interdisciplinary platform for researchers, practitioners and educators to present and discuss the most recent innovations, trends, and concerns as well as practical challenges encountered and solutions adopted in the fields of (Architecture and Urban Planning).

Architectural Structures is not just a call for academic papers on the topic; it can also include a conference, event, symposium, scientific meeting, academic, or workshop.

You are welcome to SUBMIT your research paper or manuscript to Architectural Structures Conference Track will be held at “Architecture and Urban Planning Conference in Paris, France in June 2019” - “Architecture and Urban Planning Conference in London, United Kingdom in August 2019” - “Architecture and Urban Planning Conference in New York, United States in October 2019” - “Architecture and Urban Planning Conference in Rome, Italy in December 2019” - “Architecture and Urban Planning Conference in London, United Kingdom in February 2020” - “Architecture and Urban Planning Conference in Barcelona, Spain in April 2020” .

Architectural Structures is also a leading research topic on Google Scholar, Semantic Scholar, Zenedo, OpenAIRE, BASE, WorldCAT, Sherpa/RoMEO, Elsevier, Scopus, Web of Science.

INTERNATIONAL ARCHITECTURE AND URBAN PLANNING CONFERENCE

JUNE 26 - 27, 2019
PARIS, FRANCE

INTERNATIONAL ARCHITECTURE AND URBAN PLANNING CONFERENCE

AUGUST 21 - 22, 2019
LONDON, UNITED KINGDOM

  • Abstracts/Full-Text Paper Submission Deadline May 30, 2019
  • Notification of Acceptance/Rejection Deadline June 13, 2019
  • Final Paper and Early Bird Registration Deadline July 22, 2019
  • CONFERENCE CODE: 19AUPC08GB
  • One Time Submission Deadline Reminder

INTERNATIONAL ARCHITECTURE AND URBAN PLANNING CONFERENCE

OCTOBER 09 - 10, 2019
NEW YORK, UNITED STATES

  • Abstracts/Full-Text Paper Submission Deadline May 30, 2019
  • Notification of Acceptance/Rejection Deadline June 13, 2019
  • Final Paper and Early Bird Registration Deadline September 09, 2019
  • CONFERENCE CODE: 19AUPC10US
  • One Time Submission Deadline Reminder

INTERNATIONAL ARCHITECTURE AND URBAN PLANNING CONFERENCE

DECEMBER 11 - 12, 2019
ROME, ITALY

  • Abstracts/Full-Text Paper Submission Deadline May 30, 2019
  • Notification of Acceptance/Rejection Deadline June 13, 2019
  • Final Paper and Early Bird Registration Deadline November 12, 2019
  • CONFERENCE CODE: 19AUPC12IT
  • One Time Submission Deadline Reminder

INTERNATIONAL ARCHITECTURE AND URBAN PLANNING CONFERENCE

FEBRUARY 18 - 19, 2020
LONDON, UNITED KINGDOM

  • Abstracts/Full-Text Paper Submission Deadline May 30, 2019
  • Notification of Acceptance/Rejection Deadline June 13, 2019
  • Final Paper and Early Bird Registration Deadline January 16, 2020
  • CONFERENCE CODE: 20AUPC02GB
  • One Time Submission Deadline Reminder

INTERNATIONAL ARCHITECTURE AND URBAN PLANNING CONFERENCE

APRIL 15 - 16, 2020
BARCELONA, SPAIN

  • Abstracts/Full-Text Paper Submission Deadline May 30, 2019
  • Notification of Acceptance/Rejection Deadline June 13, 2019
  • Final Paper and Early Bird Registration Deadline March 16, 2020
  • CONFERENCE CODE: 20AUPC04ES
  • One Time Submission Deadline Reminder
FINISHED

INTERNATIONAL ARCHITECTURE AND URBAN PLANNING CONFERENCE

MARCH 19 - 20, 2019
ISTANBUL, TURKEY

Architecture and Urban Planning Conference Call For Papers are listed below:

Previously Published Papers on "Architectural Structures Conference"

  • Investigating Aesthetics According to Gestalt's Theories and Principles of Architectural Design
    Authors: D. Moussazadeh, A. Aytug, Keywords: Architecture design, Gestalt, architectural principle, museum. DOI:10.5281/zenodo. Abstract: In this study, aesthetics, which is architecture-dependent, covers the interpretable, debatable, and mathematical features. The purpose of this study is to provide a different perspective on the values of formal aesthetics and to analyze architectural forms to examine the factors that are related to the form of architectural works. In this study, the formal factors of aesthetics have been objectively studied and analyzed.
  • Design Application Procedures of 15 Storied 3D Reinforced Concrete Shear Wall-Frame Structure
    Authors: H. Nikzad, S. Yoshitomi, Keywords: Structural optimization, linear static analysis, ETABS, MATLAB, RC shear wall-frame structures. DOI:10.5281/zenodo.2576934 Abstract: This paper presents the design application and reinforcement detailing of 15 storied reinforced concrete shear wall-frame structure based on linear static analysis. Databases are generated for section sizes based on automated structural optimization method utilizing Active-set Algorithm in MATLAB platform. The design constraints of allowable section sizes, capacity criteria and seismic provisions for static loads, combination of gravity and lateral loads are checked and determined based on ASCE 7-10 documents and ACI 318-14 design provision. The result of this study illustrates the efficiency of proposed method, and is expected to provide a useful reference in designing of RC shear wall-frame structures.
  • The Concept of the Aesthetic Features in Architectural Structures of the Museums
    Authors: D. Moussazadeh, A. Aytug, Keywords: Aesthetics, design principles and elements, Gestalt. DOI:10.5281/zenodo.2022087 Abstract: The focus of this study is to analyze and elaborate the formal factors in the architectural features of the museums. From aesthetic vantage point, this study has scrutinized the formal aesthetic values and identity-related features of the museums. Furthermore, the importance of the museums as the centers of knowledge, science and arts has gradually increased in the last century, whereby they have shifted from an elite standing to the pluralist approach as to address every sections of the community. This study will focus on the museum structures that are designed with the aesthetic apprehension, and presented as the artistic works on the basis of an objective attitude to elaborate the formal aesthetic factors on the formal aesthetics. It is of great importance to increase such studies for getting some concrete results to perceive the recent term aesthetic approaches and improve the forms in line with such approaches. This study elaborates the aesthetic facts solely on the basis of visual dimensions, but ignores the subjective effects to evaluate it in formal, subjective and conceptual aspects. The main material of this study comprises of the descriptive works on the conceptual substructure, and a number of schedules drawn on such concepts, which are applied on the example museum structures. Such works cover many several existing sources such as the design, philosophy, artistic philosophy, shape, form, design elements and principles as well as the museums.
  • Fiber-Based 3D Cellular Reinforcing Structures for Mineral-Bonded Composites with Enhanced Structural Impact Tolerance
    Authors: Duy M. P. Vo, Cornelia Sennewald, Gerald Hoffmann, Chokri Cherif, Keywords: 3D woven cellular structures, ductile behavior, energy absorption, fiber-based reinforced concrete, impact resistant. DOI:10.5281/zenodo.1340575 Abstract: The development of solutions to improve the resistance of buildings to short-term dynamic loads, particularly impact load, is driven by the urgent demand worldwide on securing human life and critical infrastructures. The research training group GRK 2250/1 aims to develop mineral-bonded composites that allow the fabrication of thin-layered strengthening layers providing available concrete members with enhanced impact resistance. This paper presents the development of 3D woven wire cellular structures that can be used as innovative reinforcement for targeted composites. 3D woven wire cellular structures are truss-like architectures that can be fabricated in an automatized process with a great customization possibility. The specific architecture allows this kind of structures to have good load bearing capability and forming behavior, which is of great potential to give strength against impact loading. An appropriate combination of topology and material enables an optimal use of thin-layered reinforcement in concrete constructions.
  • A Numerical Study on Semi-Active Control of a Bridge Deck under Seismic Excitation
    Authors: A. Yanik, U. Aldemir, Keywords: Bridge structures, passive control, seismic, semi-active control, viscous damping. DOI:10.5281/zenodo.1340573 Abstract: This study investigates the benefits of implementing the semi-active devices in relation to passive viscous damping in the context of seismically isolated bridge structures. Since the intrinsically nonlinear nature of semi-active devices prevents the direct evaluation of Laplace transforms, frequency response functions are compiled from the computed time history response to sinusoidal and pulse-like seismic excitation. A simple semi-active control policy is used in regard to passive linear viscous damping and an optimal non-causal semi-active control strategy. The control strategy requires optimization. Euler-Lagrange equations are solved numerically during this procedure. The optimal closed-loop performance is evaluated for an idealized controllable dash-pot. A simplified single-degree-of-freedom model of an isolated bridge is used as numerical example. Two bridge cases are investigated. These cases are; bridge deck without the isolation bearing and bridge deck with the isolation bearing. To compare the performances of the passive and semi-active control cases, frequency dependent acceleration, velocity and displacement response transmissibility ratios Ta(w), Tv(w), and Td(w) are defined. To fully investigate the behavior of the structure subjected to the sinusoidal and pulse type excitations, different damping levels are considered. Numerical results showed that, under the effect of external excitation, bridge deck with semi-active control showed better structural performance than the passive bridge deck case.
  • Practical Design Procedures of 3D Reinforced Concrete Shear Wall-Frame Structure Based on Structural Optimization Method
    Authors: H. Nikzad, S. Yoshitomi, Keywords: Structural optimization, linear static analysis, ETABS, MATLAB, RC shear wall-frame structures. DOI:10.5281/zenodo.1340398 Abstract: This study investigates and develops the structural optimization method. The effect of size constraints on practical solution of reinforced concrete (RC) building structure with shear wall is proposed. Cross-sections of beam and column, and thickness of shear wall are considered as design variables. The objective function to be minimized is total cost of the structure by using a simple and efficient automated MATLAB platform structural optimization methodology. With modification of mathematical formulations, the result is compared with optimal solution without size constraints. The most suitable combination of section sizes is selected as for the final design application based on linear static analysis. The findings of this study show that defining higher value of upper bound of sectional sizes significantly affects optimal solution, and defining of size constraints play a vital role in finding of global and practical solution during optimization procedures. The result and effectiveness of proposed method confirm the ability and efficiency of optimal solutions for 3D RC shear wall-frame structure.
  • Applying the Integrative Design Process in Architectural Firms: An Analytical Study on Egyptian Firms
    Authors: Carole A. El Raheb, Hassan K. Abdel-Salam, Ingi Elcherif, Keywords: Application, architectural firms, integrative design principles, integrative design process, the project quality. DOI:10.5281/zenodo.1317306 Abstract: An architect carrying the design process alone is the main reason for the deterioration of the quality of the architectural product as the complexity of the projects makes it a multi-disciplinary work; then, the Integrative Design Process (IDP) must be applied in the architectural firm especially from the early design phases to improve the product’s quality and to eliminate the ignorance of the principles of design causing the occurrence of low-grade buildings. The research explores the Integrative Design (ID) principles that fit in the architectural practice. Constraints facing this application are presented with strategies and solutions to overcome them. A survey questionnaire was conducted to collect data from a number of recognized Egyptian Architecture, Engineering and Construction (AEC) firms that explores their opinions on using the IDP. This survey emphasizes the importance of the IDP in firms and presents the reasons preventing the firms from applying the IDP. The aim here is to investigate the potentials of integrating this approach into architectural firms emphasizing the importance of this application which ensures the realization of the project’s goal and eliminates the reduction in the project’s quality.
  • Numerical Simulation of Lightning Strike Direct Effects on Aircraft Skin Composite Laminate
    Authors: Muhammad Khalil, Nader Abuelfoutouh, Gasser Abdelal, Adrian Murphy, Keywords: Composite structures, lightning multiphysics, magnetohydrodynamics, coupled thermal-electrical analysis, thermal plasmas. DOI:10.5281/zenodo.1315933 Abstract: Nowadays, the direct effects of lightning to aircrafts are of great importance because of the massive use of composite materials. In comparison with metallic materials, composites present several weaknesses for lightning strike direct effects. Especially, their low electrical and thermal conductivities lead to severe lightning strike damage. The lightning strike direct effects are burning, heating, magnetic force, sparking and arcing. As the problem is complex, we investigated it gradually. A magnetohydrodynamics (MHD) model is developed to simulate the lightning strikes in order to estimate the damages on the composite materials. Then, a coupled thermal-electrical finite element analysis is used to study the interaction between the lightning arc and the composite laminate and to investigate the material degradation.
  • A Ground Structure Method to Minimize the Total Installed Cost of Steel Frame Structures
    Authors: Filippo Ranalli, Forest Flager, Martin Fischer, Keywords: Cost-based structural optimization, cost-based topology and sizing optimization, steel frame ground structure optimization, multidisciplinary optimization of steel structures. DOI:10.5281/zenodo.1315821 Abstract: This paper presents a ground structure method to optimize the topology and discrete member sizing of steel frame structures in order to minimize total installed cost, including material, fabrication and erection components. The proposed method improves upon existing cost-based ground structure methods by incorporating constructability considerations well as satisfying both strength and serviceability constraints. The architecture for the method is a bi-level Multidisciplinary Feasible (MDF) architecture in which the discrete member sizing optimization is nested within the topology optimization process. For each structural topology generated, the sizing optimization process seek to find a set of discrete member sizes that result in the lowest total installed cost while satisfying strength (member utilization) and serviceability (node deflection and story drift) criteria. To accurately assess cost, the connection details for the structure are generated automatically using accurate site-specific cost information obtained directly from fabricators and erectors. Member continuity rules are also applied to each node in the structure to improve constructability. The proposed optimization method is benchmarked against conventional weight-based ground structure optimization methods resulting in an average cost savings of up to 30% with comparable computational efficiency.
  • Formex Algebra Adaptation into Parametric Design Tools: Dome Structures
    Authors: Réka Sárközi, Péter Iványi, Attila B. Széll, Keywords: Parametric design, structural morphology, space structures, spherical coordinate system. DOI:10.5281/zenodo.1315757 Abstract: The aim of this paper is to present the adaptation of the dome construction tool for formex algebra to the parametric design software Grasshopper. Formex algebra is a mathematical system, primarily used for planning structural systems such like truss-grid domes and vaults, together with the programming language Formian. The goal of the research is to allow architects to plan truss-grid structures easily with parametric design tools based on the versatile formex algebra mathematical system. To produce regular structures, coordinate system transformations are used and the dome structures are defined in spherical coordinate system. Owing to the abilities of the parametric design software, it is possible to apply further modifications on the structures and gain special forms. The paper covers the basic dome types, and also additional dome-based structures using special coordinate-system solutions based on spherical coordinate systems. It also contains additional structural possibilities like making double layer grids in all geometry forms. The adaptation of formex algebra and the parametric workflow of Grasshopper together give the possibility of quick and easy design and optimization of special truss-grid domes.