CONSTRUCTION AND MATERIALS CONFERENCE


Construction and Materials Conference is one of the leading research topics in the international research conference domain. Construction and Materials is a conference track under the Architecture and Urban Planning Conference which aims to bring together leading academic scientists, researchers and research scholars to exchange and share their experiences and research results on all aspects of Architecture and Urban Planning.

internationalconference.net provides a premier interdisciplinary platform for researchers, practitioners and educators to present and discuss the most recent innovations, trends, and concerns as well as practical challenges encountered and solutions adopted in the fields of (Architecture and Urban Planning).

Construction and Materials is not just a call for academic papers on the topic; it can also include a conference, event, symposium, scientific meeting, academic, or workshop.

You are welcome to SUBMIT your research paper or manuscript to Construction and Materials Conference Track will be held at .

Construction and Materials is also a leading research topic on Google Scholar, Semantic Scholar, Zenedo, OpenAIRE, BASE, WorldCAT, Sherpa/RoMEO, Elsevier, Scopus, Web of Science.

FINISHED

I. INTERNATIONAL ARCHITECTURE AND URBAN PLANNING CONFERENCE

MARCH 19 - 20, 2019
ISTANBUL, TURKEY

FINISHED

III. INTERNATIONAL ARCHITECTURE AND URBAN PLANNING CONFERENCE

AUGUST 21 - 22, 2019
LONDON, UNITED KINGDOM

FINISHED

IV. INTERNATIONAL ARCHITECTURE AND URBAN PLANNING CONFERENCE

OCTOBER 08 - 09, 2019
NEW YORK, UNITED STATES

FINISHED

V. INTERNATIONAL ARCHITECTURE AND URBAN PLANNING CONFERENCE

DECEMBER 12 - 13, 2019
ROME, ITALY

FINISHED

VI. INTERNATIONAL ARCHITECTURE AND URBAN PLANNING CONFERENCE

FEBRUARY 13 - 14, 2020
LONDON, UNITED KINGDOM

FINISHED

VII. INTERNATIONAL ARCHITECTURE AND URBAN PLANNING CONFERENCE

APRIL 15 - 16, 2020
BARCELONA, SPAIN

FINISHED

VIII. INTERNATIONAL ARCHITECTURE AND URBAN PLANNING CONFERENCE

MAY 11 - 12, 2020
ISTANBUL, TURKEY

FINISHED

IX. INTERNATIONAL ARCHITECTURE AND URBAN PLANNING CONFERENCE

JUNE 05 - 06, 2020
SAN FRANCISCO, UNITED STATES

FINISHED

X. INTERNATIONAL ARCHITECTURE AND URBAN PLANNING CONFERENCE

JULY 20 - 21, 2020
PARIS, FRANCE

FINISHED

XI. INTERNATIONAL ARCHITECTURE AND URBAN PLANNING CONFERENCE

AUGUST 10 - 11, 2020
NEW YORK, UNITED STATES

FINISHED

XII. INTERNATIONAL ARCHITECTURE AND URBAN PLANNING CONFERENCE

SEPTEMBER 10 - 11, 2020
TOKYO, JAPAN

FINISHED

XIII. INTERNATIONAL ARCHITECTURE AND URBAN PLANNING CONFERENCE

SEPTEMBER 16 - 17, 2020
ZÜRICH, SWITZERLAND

FINISHED

XIV. INTERNATIONAL ARCHITECTURE AND URBAN PLANNING CONFERENCE

OCTOBER 21 - 22, 2020
BARCELONA, SPAIN

FINISHED

XV. INTERNATIONAL ARCHITECTURE AND URBAN PLANNING CONFERENCE

NOVEMBER 02 - 03, 2020
SAN FRANCISCO, UNITED STATES

FINISHED

XVI. INTERNATIONAL ARCHITECTURE AND URBAN PLANNING CONFERENCE

NOVEMBER 12 - 13, 2020
ISTANBUL, TURKEY

FINISHED

XVII. INTERNATIONAL ARCHITECTURE AND URBAN PLANNING CONFERENCE

NOVEMBER 19 - 20, 2020
SINGAPORE, SINGAPORE

FINISHED

XVIII. INTERNATIONAL ARCHITECTURE AND URBAN PLANNING CONFERENCE

DECEMBER 15 - 16, 2020
BANGKOK, THAILAND

FINISHED

XIX. INTERNATIONAL ARCHITECTURE AND URBAN PLANNING CONFERENCE

DECEMBER 28 - 29, 2020
PARIS, FRANCE

FINISHED

XX. INTERNATIONAL ARCHITECTURE AND URBAN PLANNING CONFERENCE

FEBRUARY 13 - 14, 2021
LONDON, UNITED KINGDOM

FINISHED

XXI. INTERNATIONAL ARCHITECTURE AND URBAN PLANNING CONFERENCE

APRIL 15 - 16, 2021
BARCELONA, SPAIN

FINISHED

XXII. INTERNATIONAL ARCHITECTURE AND URBAN PLANNING CONFERENCE

MAY 11 - 12, 2021
ISTANBUL, TURKEY

FINISHED

XXIII. INTERNATIONAL ARCHITECTURE AND URBAN PLANNING CONFERENCE

JUNE 05 - 06, 2021
SAN FRANCISCO, UNITED STATES

FINISHED

XXIV. INTERNATIONAL ARCHITECTURE AND URBAN PLANNING CONFERENCE

JULY 20 - 21, 2021
PARIS, FRANCE

FINISHED

XXV. INTERNATIONAL ARCHITECTURE AND URBAN PLANNING CONFERENCE

AUGUST 10 - 11, 2021
NEW YORK, UNITED STATES

FINISHED

XXVI. INTERNATIONAL ARCHITECTURE AND URBAN PLANNING CONFERENCE

SEPTEMBER 10 - 11, 2021
TOKYO, JAPAN

FINISHED

XXVII. INTERNATIONAL ARCHITECTURE AND URBAN PLANNING CONFERENCE

SEPTEMBER 16 - 17, 2021
ZÜRICH, SWITZERLAND

FINISHED

XXVIII. INTERNATIONAL ARCHITECTURE AND URBAN PLANNING CONFERENCE

OCTOBER 21 - 22, 2021
BARCELONA, SPAIN

FINISHED

XXIX. INTERNATIONAL ARCHITECTURE AND URBAN PLANNING CONFERENCE

NOVEMBER 02 - 03, 2021
SAN FRANCISCO, UNITED STATES

FINISHED

XXX. INTERNATIONAL ARCHITECTURE AND URBAN PLANNING CONFERENCE

NOVEMBER 12 - 13, 2021
ISTANBUL, TURKEY

FINISHED

XXXI. INTERNATIONAL ARCHITECTURE AND URBAN PLANNING CONFERENCE

NOVEMBER 19 - 20, 2021
SINGAPORE, SINGAPORE

FINISHED

XXXII. INTERNATIONAL ARCHITECTURE AND URBAN PLANNING CONFERENCE

DECEMBER 15 - 16, 2021
BANGKOK, THAILAND

FINISHED

XXXIII. INTERNATIONAL ARCHITECTURE AND URBAN PLANNING CONFERENCE

DECEMBER 28 - 29, 2021
PARIS, FRANCE

Architecture and Urban Planning Conference Call For Papers are listed below:

Previously Published Papers on "Construction and Materials Conference"

  • Construction Port Requirements for Floating Offshore Wind Turbines
    Authors: Alan Crowle, Philpp Thies, Keywords: Floating offshore wind turbine, port logistics, installation, construction. DOI:10.5281/zenodo. Abstract: s the floating offshore wind turbine industry continues to develop and grow, the capabilities of established port facilities need to be assessed as to their ability to support the expanding construction and installation requirements. This paper assesses current infrastructure requirements and projected changes to port facilities that may be required to support the floating offshore wind industry. Understanding the infrastructure needs of the floating offshore renewable industry will help to identify the port-related requirements. Floating offshore wind turbines can be installed further out to sea and in deeper waters than traditional fixed offshore wind arrays, meaning it can take advantage of stronger winds. Separate ports are required for substructure construction, fit-out of the turbines, moorings, subsea cables and maintenance. Large areas are required for the laydown of mooring equipment, inter array cables, turbine blades and nacelles. The capabilities of established port facilities to support floating wind farms are assessed by evaluation of size of substructures, height of wind turbine with regards to the cranes for fitting of blades, distance to offshore site and offshore installation vessel characteristics. The paper will discuss the advantages and disadvantages of using large land based cranes, inshore floating crane vessels or offshore crane vessels at the fit-out port for the installation of the turbine. Water depths requirements for import of materials and export of the completed structures will be considered. There are additional costs associated with any emerging technology. However, part of the popularity of Floating Offshore Wind Turbines stems from the cost savings against permanent structures like fixed wind turbines. Floating Offshore Wind Turbine developers can benefit from lighter, more cost effective equipment which can be assembled in port and towed to site rather than relying on large, expensive installation vessels to transport and erect fixed bottom turbines. The ability to assemble Floating Offshore Wind Turbines equipment on shore means minimising highly weather dependent operations like offshore heavy lifts and assembly, saving time and costs and reducing safety risks for offshore workers. Maintenance might take place in safer onshore conditions for barges and semi submersibles. Offshore renewables, such as floating wind, can take advantage of this wealth of experience, while oil and gas operators can deploy this experience at the same time as entering the renewables space. The floating offshore wind industry is in the early stages of development and port facilities are required for substructure fabrication, turbine manufacture, turbine construction and maintenance support. The paper discusses the potential floating wind substructures as this provides a snapshot of the requirements at the present time, and potential technological developments required for commercial development. Scaling effects of demonstration-scale projects will be addressed; however the primary focus will be on commercial-scale (30+ units) device floating wind energy farms.
  • Mechanical Behavior of Recycled Mortars Manufactured from Moisture Correction Using the Halogen Light Thermogravimetric Balance as an Alternative to the Traditional ASTM C 128 Method
    Authors: Diana Gómez-Cano, J. C. Ochoa-Botero, Roberto Bernal Correa, Yhan Paul Arias, Keywords: Alternative raw materials, halogen light, recycled mortar, resources optimization, water absorption. DOI:10.5281/zenodo. Abstract: To obtain high mechanical performance, the fresh conditions of a mortar are decisive. Measuring the absorption of aggregates used in mortar mixes is a fundamental requirement for proper design of the mixes prior to their placement in construction sites. In this sense, absorption is a determining factor in the design of a mix because it conditions the amount of water, which in turn affects the water/cement ratio and the final porosity of the mortar. Thus, this work focuses on the mechanical behavior of recycled mortars manufactured from moisture correction using the Thermogravimetric Balancing Halogen Light (TBHL) technique in comparison with the traditional ASTM C 128 International Standard method. The advantages of using the TBHL technique are favorable in terms of reduced consumption of resources such as materials, energy and time. The results show that in contrast to the ASTM C 128 method, the TBHL alternative technique allows obtaining a higher precision in the absorption values of recycled aggregates, which is reflected not only in a more efficient process in terms of sustainability in the characterization of construction materials, but also in an effect on the mechanical performance of recycled mortars.
  • Abating the Barriers to the Deployment of Radio Frequency Identification for Construction Project Delivery in South Africa
    Authors: Matthew O. Ikuabe, Ayodeji E. Oke, Clinton O. Aigbavboa, Douglas O. Aghimien, Tshepo P. Mokori, Keywords: Barriers, construction, project delivery, RFID. DOI:10.5281/zenodo. Abstract: The use of technological innovations has been touted to be beneficial in the delivery of construction projects. Particularly, Radio Frequency Identification (RFID) technology is widely regarded to be of immense advantage for the management of construction projects. This study focused on evaluating the barriers to the use of RFID technology for the delivery of construction projects. Using Gauteng Province in South Africa as the study area, questionnaire was used in eliciting responses from construction professionals which made up the population of the study. Retrieved data were analyzed using Mean Item Score and One-Sample t-test. Findings from the study showed that the most significant barriers to the deployment of RFID for construction project delivery are high cost and lack of awareness. Conclusively, the study made recommendations that would aid in the abatement of the barriers to the use of RFID technology for construction project delivery.
  • Study on the Influence of Cladding and Finishing Materials of Apartment Buildings on the Architectural Identity of Amman, Jordan
    Authors: Asil Y. Zureigat, Ayat A. Oudat, Keywords: Architectural city identity, cladding materials, façade architecture, image of the city. DOI:10.5281/zenodo. Abstract: Analyzing the old and bringing in the new is an ever-ongoing process in driving innovations in architecture. This paper looks at the excessive use of stone in apartment buildings in Amman and speculates on the existing possibilities of changing the cladding material. By looking at architectural exceptions present in Amman, the paper seeks to make the exception the rule, by adding new materials to the architectural library of Amman and in turn, project a series of possible new identities to the existing stone scape. Through distributing a survey, conducting a photographic study on exceptional buildings and shedding light on the historical narrative of stone, the paper highlights the ways in which new finishing materials such as plaster, paint and stone variations could be introduced in an attempt to project a new architectural identity to Amman.
  • Effects of Asphalt Modification with Nanomaterials on Fresh and Stored Bitumen
    Authors: Ahmed W. Oda, Ahmed El-Desouky, Hassan Mahdy, Osama M. Moussa, Keywords: Bitumen, modified bitumen, aged, stored, nanomaterials. DOI:10.5281/zenodo. Abstract: Nanomaterials have many applications in the field of asphalt paving. Two locally produced nanomaterials were used in the asphalt binder modification. The nanomaterials used are Nanosilica (NS), and Nanoclay (NC). The virgin asphalt binder was characterized by the conventional tests. The bitumen was modified by 3%, 5% and 7% of NS and NC. The penetration index (PI), and the retaining penetration (RP) was calculated based on the results of the penetration and the softening point tests. The results show that the RP becomes 95.35% at 5% NS modified bitumen and reaches 97.56% when bitumen is modified with 3% NC. The results show significant improvement in the bitumen stiffness when modified by the two types of nanomaterials, either fresh or aged (stored).
  • Supplementary Cementitious Materials as Sustainable Partial Replacement for Cement in the Building Industry
    Authors: Nwakaego C. Onyenokporo, Keywords: Cement, greenhouse gases, landfills, sustainable, waste materials. DOI:10.5281/zenodo. Abstract: Cement is the most extensively used construction material due to its strength and versatility of use. However, the production of Portland cement has become unsustainable because of high energy usage, reduction of natural non-renewable resources and emissions of greenhouse gases. Production of cement contributes to anthropogenic greenhouse gases emissions annually. The growing concerns for the environment resulting from this constant and excessive use of cement has therefore raised the need for more green materials and technology. The use of supplementary cementitious materials (SCMs) is considered as one of the many alternatives suited to address this issue and serve as a sustainable partial replacement for cement in construction. This paper will examine the reuse of these waste materials to partially replace Portland cement. It provides a critical review of literature analysing various supplementary cementitious materials which are applicable in the building industry as either partial replacement for cement or aggregates. These materials have been grouped based on source into industrial wastes, domestic/general wastes, and agricultural wastes. The reuse of these waste materials could potentially reduce the negative effects of cement production and reduce landfills which constitute an environmental nuisance. This paper seeks to inform building industry professionals and researchers in the field on the applicability of these waste materials in construction.
  • Supplementary Cementitious Materials as Sustainable Partial Replacement for Cement in the Building Industry
    Authors: Nwakaego C. Onyenokporo, Keywords: cement, greenhouse gases, landfills, sustainable, waste materials DOI:10.5281/zenodo. Abstract: Cement is the most extensively used construction material due to its strength and versatility of use. However, the production of Portland cement has become unsustainable because of high energy usage, reduction of natural non-renewable resources and emissions of greenhouse gases. Production of cement contributes to anthropogenic greenhouse gases emissions annually. The growing concerns for the environment resulting from this constant and excessive use of cement has therefore raised the need for more green materials and technology. The use of supplementary cementitious materials (SCMs) is considered as one of the many alternatives suited to address this issue and serve as a sustainable partial replacement for cement in construction. This paper will examine the reuse of these waste materials to partially replace Portland cement. It provides a critical review of literature analysing various supplementary cementitious materials which are applicable in the building industry as either partial replacement for cement or aggregates. These materials have been grouped based on source into industrial wastes, domestic/general wastes, and agricultural wastes. The reuse of these waste materials could potentially reduce the negative effects of cement production and reduce landfills which constitute an environmental nuisance. This paper seeks to inform building industry professionals and researchers in the field on the applicability of these waste materials in construction.
  • Study of the Thermal Performance of Bio-Sourced Materials Used as Thermal Insulation in Buildings under Humid Tropical Climate
    Authors: Guarry Montrose, Ted Soubdhan, Keywords: Buildings, insulating properties, natural materials of plant origin, thermal performance. DOI:10.5281/zenodo. Abstract: In the fight against climate change, the energy consuming building sector must also be taken into account to solve this problem. In this case thermal insulation of buildings using bio-based materials is an interesting solution. Therefore, the thermal performance of some materials of this type has been studied. The advantages of these natural materials of plant origin are multiple, biodegradable, low economic cost, renewable and readily available. The use of biobased materials is widespread in the building sector in order to replace conventional insulation materials with natural materials. Vegetable fibers are very important because they have good thermal behaviour and good insulating properties. The aim of using bio-sourced materials is in line with the logic of energy control and environmental protection, the approach is to make the inhabitants of the houses comfortable and reduce their energy consumption (energy efficiency). In this research we will present the results of studies carried out on the thermal conductivity of banana leaves, latan leaves, vetivers fibers, palm kernel fibers, sargassum, coconut leaves, sawdust and bulk sugarcane leaves. The study on thermal conductivity was carried out in two ways, on the one hand using the flash method, and on the other hand a so-called hot box experiment was carried out. We will discuss and highlight a number of influential factors such as moisture and air pockets present in the samples on the thermophysical properties of these materials, in particular thermal conductivity. Finally, the result of a thermal performance test of banana leaves on a roof in Haiti will also be presented in this work.
  • Challenges and Opportunities of E-Procurement in the Construction Industry
    Authors: Mansur Hamma-adama, Abdul-Basit Sa’eed Ahmad, Keywords: Challenges, construction industry, corruption, e-procurement, Nigeria, opportunities. DOI:10.5281/zenodo. Abstract: Construction Industry is evolving amid the fourth industrial revolution. Transportation, commerce, manufacturing and many other industries ripened the current technological advancement and are striving to utilise every development in the IT sector. The procurement of construction works is known to be very conventional and backward in the adoption of digitalisation. The construction industry's procurement and supply chain are blamed for the most inflated cost of construction projects, mainly attributed to a lack of transparency and trust between the industry stakeholders. This research explores the challenges of e-procurement adoption in the industry and identifies the potential opportunities for its usage. This investigation's data are acquired through interviews, and the data are analysed using qualitative content analysis. This study reveals compounding challenges (i.e., corruption and lack of commitment) that lead to the failure of such efforts in Nigeria and the potential prospects (i.e., transparency and efficiency). This study is essential in developing a more effective and transparent process of procurement so that the Nigerian construction industry is not be left behind in the fast-digitalising markets.
  • Electrical Effects during the Wetting-Drying Cycle of Porous Brickwork: Electrical Aspects of Rising Damp
    Authors: Sandor Levai, Valentin Juhasz, Miklos Gasz, Keywords: Brick masonry, electrical phenomena in damp brickwork, porous building materials, rising damp, spontaneous electrical potential, wetting-drying cycle. DOI:10.5281/zenodo. Abstract: Rising damp is an extremely complex phenomenon that is of great practical interest to the field of building conservation due to the irreversible damages it can make to old and historic structures. The electrical effects occurring in damp masonry have been scarcely researched and are a largely unknown aspect of rising damp. Present paper describes the typical electrical patterns occurring in porous brickwork during a wetting and drying cycle. It has been found that in contrast with dry masonry, where electrical phenomena are virtually non-existent, damp masonry exhibits a wide array of electrical effects. Long-term real-time measurements performed in the lab on small-scale brick structures, using an array of embedded micro-sensors, revealed significant voltage, current, capacitance and resistance variations which can be linked to the movement of moisture inside porous materials. The same measurements performed on actual old buildings revealed a similar behaviour, the electrical effects being more significant in areas of the brickwork affected by rising damp. Understanding these electrical phenomena contributes to a better understanding of the driving mechanisms of rising damp, potentially opening new avenues of dealing with it in a less invasive manner.

Conferences by Location