HUMAN PAPILLOMA VIRUS (HPV) CONFERENCE


Human Papilloma Virus (HPV) Conference is one of the leading research topics in the international research conference domain. Human Papilloma Virus (HPV) is a conference track under the Healthcare Conference which aims to bring together leading academic scientists, researchers and research scholars to exchange and share their experiences and research results on all aspects of Healthcare.

internationalconference.net provides a premier interdisciplinary platform for researchers, practitioners and educators to present and discuss the most recent innovations, trends, and concerns as well as practical challenges encountered and solutions adopted in the fields of (Healthcare).

Human Papilloma Virus (HPV) is not just a call for academic papers on the topic; it can also include a conference, event, symposium, scientific meeting, academic, or workshop.

You are welcome to SUBMIT your research paper or manuscript to Human Papilloma Virus (HPV) Conference Track will be held at .

Human Papilloma Virus (HPV) is also a leading research topic on Google Scholar, Semantic Scholar, Zenedo, OpenAIRE, BASE, WorldCAT, Sherpa/RoMEO, Elsevier, Scopus, Web of Science.

FINISHED

I. INTERNATIONAL HEALTHCARE CONFERENCE

MARCH 19 - 20, 2019
ISTANBUL, TURKEY

FINISHED

II. INTERNATIONAL HEALTHCARE CONFERENCE

JUNE 26 - 27, 2019
PARIS, FRANCE

FINISHED

III. INTERNATIONAL HEALTHCARE CONFERENCE

AUGUST 21 - 22, 2019
LONDON, UNITED KINGDOM

FINISHED

IV. INTERNATIONAL HEALTHCARE CONFERENCE

OCTOBER 08 - 09, 2019
NEW YORK, UNITED STATES

FINISHED

V. INTERNATIONAL HEALTHCARE CONFERENCE

DECEMBER 12 - 13, 2019
ROME, ITALY

FINISHED

VI. INTERNATIONAL HEALTHCARE CONFERENCE

FEBRUARY 13 - 14, 2020
LONDON, UNITED KINGDOM

FINISHED

VII. INTERNATIONAL HEALTHCARE CONFERENCE

APRIL 15 - 16, 2020
BARCELONA, SPAIN

FINISHED

VIII. INTERNATIONAL HEALTHCARE CONFERENCE

MAY 11 - 12, 2020
ISTANBUL, TURKEY

FINISHED

IX. INTERNATIONAL HEALTHCARE CONFERENCE

JUNE 05 - 06, 2020
SAN FRANCISCO, UNITED STATES

FINISHED

X. INTERNATIONAL HEALTHCARE CONFERENCE

JULY 20 - 21, 2020
PARIS, FRANCE

FINISHED

XI. INTERNATIONAL HEALTHCARE CONFERENCE

AUGUST 10 - 11, 2020
NEW YORK, UNITED STATES

FINISHED

XII. INTERNATIONAL HEALTHCARE CONFERENCE

SEPTEMBER 10 - 11, 2020
TOKYO, JAPAN

FINISHED

XIII. INTERNATIONAL HEALTHCARE CONFERENCE

SEPTEMBER 16 - 17, 2020
ZÜRICH, SWITZERLAND

FINISHED

XIV. INTERNATIONAL HEALTHCARE CONFERENCE

OCTOBER 21 - 22, 2020
BARCELONA, SPAIN

FINISHED

XV. INTERNATIONAL HEALTHCARE CONFERENCE

NOVEMBER 02 - 03, 2020
SAN FRANCISCO, UNITED STATES

FINISHED

XVI. INTERNATIONAL HEALTHCARE CONFERENCE

NOVEMBER 12 - 13, 2020
ISTANBUL, TURKEY

FINISHED

XVII. INTERNATIONAL HEALTHCARE CONFERENCE

NOVEMBER 19 - 20, 2020
SINGAPORE, SINGAPORE

FINISHED

XVIII. INTERNATIONAL HEALTHCARE CONFERENCE

DECEMBER 15 - 16, 2020
BANGKOK, THAILAND

FINISHED

XIX. INTERNATIONAL HEALTHCARE CONFERENCE

DECEMBER 28 - 29, 2020
PARIS, FRANCE

FINISHED

XX. INTERNATIONAL HEALTHCARE CONFERENCE

FEBRUARY 13 - 14, 2021
LONDON, UNITED KINGDOM

FINISHED

XXI. INTERNATIONAL HEALTHCARE CONFERENCE

APRIL 15 - 16, 2021
BARCELONA, SPAIN

FINISHED

XXII. INTERNATIONAL HEALTHCARE CONFERENCE

MAY 11 - 12, 2021
ISTANBUL, TURKEY

FINISHED

XXIII. INTERNATIONAL HEALTHCARE CONFERENCE

JUNE 05 - 06, 2021
SAN FRANCISCO, UNITED STATES

FINISHED

XXIV. INTERNATIONAL HEALTHCARE CONFERENCE

JULY 20 - 21, 2021
PARIS, FRANCE

FINISHED

XXV. INTERNATIONAL HEALTHCARE CONFERENCE

AUGUST 10 - 11, 2021
NEW YORK, UNITED STATES

FINISHED

XXVI. INTERNATIONAL HEALTHCARE CONFERENCE

SEPTEMBER 10 - 11, 2021
TOKYO, JAPAN

FINISHED

XXVII. INTERNATIONAL HEALTHCARE CONFERENCE

SEPTEMBER 16 - 17, 2021
ZÜRICH, SWITZERLAND

FINISHED

XXVIII. INTERNATIONAL HEALTHCARE CONFERENCE

OCTOBER 21 - 22, 2021
BARCELONA, SPAIN

FINISHED

XXIX. INTERNATIONAL HEALTHCARE CONFERENCE

NOVEMBER 02 - 03, 2021
SAN FRANCISCO, UNITED STATES

FINISHED

XXX. INTERNATIONAL HEALTHCARE CONFERENCE

NOVEMBER 12 - 13, 2021
ISTANBUL, TURKEY

FINISHED

XXXI. INTERNATIONAL HEALTHCARE CONFERENCE

NOVEMBER 19 - 20, 2021
SINGAPORE, SINGAPORE

FINISHED

XXXII. INTERNATIONAL HEALTHCARE CONFERENCE

DECEMBER 15 - 16, 2021
BANGKOK, THAILAND

FINISHED

XXXIII. INTERNATIONAL HEALTHCARE CONFERENCE

DECEMBER 28 - 29, 2021
PARIS, FRANCE

Healthcare Conference Call For Papers are listed below:

Previously Published Papers on "Human Papilloma Virus (HPV) Conference"

  • Parameters Influencing Human-Machine Interaction in Hospitals
    Authors: Hind Bouami, Patrick Millot, Keywords: Life-critical systems, situation awareness, human-machine interaction, decision-making. DOI:10.5281/zenodo. Abstract: Handling life-critical systems complexity requires to be equipped with appropriate technology and the right human agents’ functions such as knowledge, experience, and competence in problem’s prevention and solving. Human agents are involved in the management and control of human-machine system’s performance. Documenting human agent’s situation awareness is crucial to support human-machine designers’ decision-making. Knowledge about risks, critical parameters and factors that can impact and threaten automation system’s performance should be collected using preventive and retrospective approaches. This paper aims to document operators’ situation awareness through the analysis of automated organizations’ feedback. The analysis of automated hospital pharmacies feedback helps identify and control critical parameters influencing human machine interaction in order to enhance system’s performance and security. Our human machine system evaluation approach has been deployed in Macon hospital center’s pharmacy which is equipped with automated drug dispensing systems since 2015. Automation’s specifications are related to technical aspects, human-machine interaction, and human aspects. The evaluation of drug delivery automation performance in Macon hospital center has shown that the performance of the automated activity depends on the performance of the automated solution chosen, and also on the control of systemic factors. In fact, 80.95% of automation specification related to the chosen Sinteco’s automated solution is met. The performance of the chosen automated solution is involved in 28.38% of automation specifications performance in Macon hospital center. The remaining systemic parameters involved in automation specifications performance need to be controlled. 
  • Verification and Proposal of Information Processing Model Using EEG-Based Brain Activity Monitoring
    Authors: Toshitaka Higashino, Naoki Wakamiya, Keywords: Brain activity, EEG, information processing model, model human processor. DOI:10.5281/zenodo. Abstract: Human beings perform a task by perceiving information from outside, recognizing them, and responding them. There have been various attempts to analyze and understand internal processes behind the reaction to a given stimulus by conducting psychological experiments and analysis from multiple perspectives. Among these, we focused on Model Human Processor (MHP). However, it was built based on psychological experiments and thus the relation with brain activity was unclear so far. To verify the validity of the MHP and propose our model from a viewpoint of neuroscience, EEG (Electroencephalography) measurements are performed during experiments in this study. More specifically, first, experiments were conducted where Latin alphabet characters were used as visual stimuli. In addition to response time, ERPs (event-related potentials) such as N100 and P300 were measured by using EEG. By comparing cycle time predicted by the MHP and latency of ERPs, it was found that N100, related to perception of stimuli, appeared at the end of the perceptual processor. Furthermore, by conducting an additional experiment, it was revealed that P300, related to decision making, appeared during the response decision process, not at the end. Second, by experiments using Japanese Hiragana characters, i.e. Japan's own phonetic symbols, those findings were confirmed. Finally, Japanese Kanji characters were used as more complicated visual stimuli. A Kanji character usually has several readings and several meanings. Despite the difference, a reading-related task and a meaning-related task exhibited similar results, meaning that they involved similar information processing processes of the brain. Based on those results, our model was proposed which reflects response time and ERP latency. It consists of three processors: the perception processor from an input of a stimulus to appearance of N100, the cognitive processor from N100 to P300, and the decision-action processor from P300 to response. Using our model, an application system which reflects brain activity can be established.
  • Risk Management Approach for a Secure and Performant Integration of Automated Drug Dispensing Systems in Hospitals
    Authors: Hind Bouami, Patrick Millot, Keywords: Automated drug delivery systems, hospitals, human-centered automated system, risk management. DOI:10.5281/zenodo. Abstract: Medication dispensing system is a life-critical system whose failure may result in preventable adverse events leading to longer patient stays in hospitals or patient death. Automation has led to great improvements in life-critical systems as it increased safety, efficiency, and comfort. However, critical risks related to medical organization complexity and automated solutions integration can threaten drug dispensing security and performance. Knowledge about the system’s complexity aspects and human machine parameters to control for automated equipment’s security and performance will help operators to secure their automation process and to optimize their system’s reliability. In this context, this study aims to document the operator’s situation awareness about automation risks and parameters involved in automation security and performance. Our risk management approach has been deployed in the North Luxembourg hospital center’s pharmacy, which is equipped with automated drug dispensing systems since 2009. With more than 4 million euros of gains generated, North Luxembourg hospital center’s success story was enabled by the management commitment, pharmacy’s involvement in the implementation and improvement of the automation project, and the close collaboration between the pharmacy and Sinteco’s firm to implement the necessary innovation and organizational actions for automated solutions integration security and performance. An analysis of the actions implemented by the hospital and the parameters involved in automated equipment’s integration security and performance has been made. The parameters to control for automated equipment’s integration security and performance are human aspects (6.25%), technical aspects (50%), and human-machine interaction (43.75%). The implementation of an anthropocentric analysis system before automation would have prevented and optimized the control of risks related to automation.
  • A Taxonomy of Behavior for a Medical Coordinator by Utlizing Leadership Styles
    Authors: Aryana Collins Jackson, Elisabetta Bevacqua, Pierre De Loor, Ronan Querrec, Keywords: Medical, leadership styles, taxonomy, human behavior. DOI:10.5281/zenodo.10.5281/zenodo.5913527 Abstract: This paper presents a taxonomy of non-technical skills, communicative intentions, and behavior for an individual acting as a medical coordinator. In medical emergency situations, a leader among the group is imperative to both patient health and team emotional and mental health. Situational Leadership is used to make clear and easy-to-follow guidelines for behavior depending on circumstantial factors. Low-level leadership behaviors belonging to two different styles, directive and supporting, are identified from literature and are included in the proposed taxonomy. The high-level information in the taxonomy consists of the necessary non-technical skills belonging to a medical coordinator: situation awareness, decision making, task management, and teamwork. Finally, communicative intentions, dimensions, and functions are included. Thus this work brings high-level and low-level information - medical non-technical skills, communication capabilities, and leadership behavior - into a single versatile taxonomy of behavior.
  • Human Factors Considerations in New Generation Fighter Planes to Enhance Combat Effectiveness
    Authors: Chitra Rajagopal, Indra Deo Kumar, Ruchi Joshi, Binoy Bhargavan, Keywords: Combat effectiveness, emerging technologies, human factors, systems safety analysis. DOI:10.5281/zenodo. Abstract: Role of fighter planes in modern network centric military warfare scenarios has changed significantly in the recent past. New generation fighter planes have multirole capability of engaging both air and ground targets with high precision. Multirole aircraft undertakes missions such as Air to Air combat, Air defense, Air to Surface role (including Air interdiction, Close air support, Maritime attack, Suppression and Destruction of enemy air defense), Reconnaissance, Electronic warfare missions, etc. Designers have primarily focused on development of technologies to enhance the combat performance of the fighter planes and very little attention is given to human factor aspects of technologies. Unique physical and psychological challenges are imposed on the pilots to meet operational requirements during these missions. Newly evolved technologies have enhanced aircraft performance in terms of its speed, firepower, stealth, electronic warfare, situational awareness, and vulnerability reduction capabilities. This paper highlights the impact of emerging technologies on human factors for various military operations and missions. Technologies such as ‘cooperative knowledge-based systems’ to aid pilot’s decision making in military conflict scenarios as well as simulation technologies to enhance human performance is also studied as a part of research work. Current and emerging pilot protection technologies and systems which form part of the integrated life support systems in new generation fighter planes is discussed. System safety analysis application to quantify the human reliability in military operations is also studied.
  • Negative RT-PCR in a Newborn Infected with Zika Virus: A Case Report
    Authors: Vallejo Michael, Acuña Edgar, Roa Juan David, Peñuela Rosa, Parra Alejandra, Casallas Daniela, Rodriguez Sheyla, Keywords: Zika Virus, polymerase chain reaction, microcephaly, amniotic fluid. DOI:10.5281/zenodo.3298934 Abstract: Congenital Zika Virus Syndrome is an entity composed by a variety of birth defects presented in newborns that have been exposed to the Zika Virus during pregnancy. The syndrome characteristic features are severe microcephaly, cerebral tissue abnormalities, ophthalmological abnormalities such as uveitis and chorioretinitis, arthrogryposis, clubfoot deformity and muscular tone abnormalities. The confirmatory test is the Reverse transcription polymerase chain reaction (RT-PCR) associated to the physical findings. Here we present the case of a newborn with microcephaly whose mother presented a confirmed Zika Virus infection during the third trimester of pregnancy, despite of the evident findings and the history of Zika infection the RT-PCR in amniotic and cerebrospinal fluid of the newborn was negative. RT-PCR has demonstrated a low sensibility in samples with low viral loads, reason why, we propose a clinical diagnosis in patients with clinical history of Zika Virus infection during pregnancy accompanied by evident clinical manifestations of the child.
  • Automated, Objective Assessment of Pilot Performance in Simulated Environment
    Authors: Maciej Zasuwa, Grzegorz Ptasinski, Antoni Kopyt, Keywords: Automated assessment, flight simulator, human factors, pilot training. DOI:10.5281/zenodo.2643561 Abstract: Nowadays flight simulators offer tremendous possibilities for safe and cost-effective pilot training, by utilization of powerful, computational tools. Due to technology outpacing methodology, vast majority of training related work is done by human instructors. It makes assessment not efficient, and vulnerable to instructors’ subjectivity. The research presents an Objective Assessment Tool (gOAT) developed at the Warsaw University of Technology, and tested on SW-4 helicopter flight simulator. The tool uses database of the predefined manoeuvres, defined and integrated to the virtual environment. These were implemented, basing on Aeronautical Design Standard Performance Specification Handling Qualities Requirements for Military Rotorcraft (ADS-33), with predefined Mission-Task-Elements (MTEs). The core element of the gOAT enhanced algorithm that provides instructor a new set of information. In details, a set of objective flight parameters fused with report about psychophysical state of the pilot. While the pilot performs the task, the gOAT system automatically calculates performance using the embedded algorithms, data registered by the simulator software (position, orientation, velocity, etc.), as well as measurements of physiological changes of pilot’s psychophysiological state (temperature, sweating, heart rate). Complete set of measurements is presented on-line to instructor’s station and shown in dedicated graphical interface. The presented tool is based on open source solutions, and flexible for editing. Additional manoeuvres can be easily added using guide developed by authors, and MTEs can be changed by instructor even during an exercise. Algorithm and measurements used allow not only to implement basic stress level measurements, but also to reduce instructor’s workload significantly. Tool developed can be used for training purpose, as well as periodical checks of the aircrew. Flexibility and ease of modifications allow the further development to be wide ranged, and the tool to be customized. Depending on simulation purpose, gOAT can be adjusted to support simulator of aircraft, helicopter, or unmanned aerial vehicle (UAV).
  • Unstructured-Data Content Search Based on Optimized EEG Signal Processing and Multi-Objective Feature Extraction
    Authors: Qais M. Yousef, Yasmeen A. Alshaer, Keywords: Artificial intelligence, data contents search, human active memory, mind wave, multi-objective optimization. DOI:10.5281/zenodo.1474839 Abstract: Over the last few years, the amount of data available on the globe has been increased rapidly. This came up with the emergence of recent concepts, such as the big data and the Internet of Things, which have furnished a suitable solution for the availability of data all over the world. However, managing this massive amount of data remains a challenge due to their large verity of types and distribution. Therefore, locating the required file particularly from the first trial turned to be a not easy task, due to the large similarities of names for different files distributed on the web. Consequently, the accuracy and speed of search have been negatively affected. This work presents a method using Electroencephalography signals to locate the files based on their contents. Giving the concept of natural mind waves processing, this work analyses the mind wave signals of different people, analyzing them and extracting their most appropriate features using multi-objective metaheuristic algorithm, and then classifying them using artificial neural network to distinguish among files with similar names. The aim of this work is to provide the ability to find the files based on their contents using human thoughts only. Implementing this approach and testing it on real people proved its ability to find the desired files accurately within noticeably shorter time and retrieve them as a first choice for the user.
  • Assessing the Impact of High Fidelity Human Patient Simulation on Teamwork among Nursing, Medicine and Pharmacy Undergraduate Students
    Authors: S. MacDonald, A. Manuel, R. Law, N. Bandruak, A. Dubrowski, V. Curran, J. Smith-Young, K. Simmons, A. Warren, Keywords: Acute anaphylaxis, high fidelity human patient simulation, low fidelity simulation, interprofessional education. DOI:10.5281/zenodo.1474329 Abstract: High fidelity human patient simulation has been used for many years by health sciences education programs to foster critical thinking, engage learners, improve confidence, improve communication, and enhance psychomotor skills. Unfortunately, there is a paucity of research on the use of high fidelity human patient simulation to foster teamwork among nursing, medicine and pharmacy undergraduate students. This study compared the impact of high fidelity and low fidelity simulation education on teamwork among nursing, medicine and pharmacy students. For the purpose of this study, two innovative teaching scenarios were developed based on the care of an adult patient experiencing acute anaphylaxis: one high fidelity using a human patient simulator and one low fidelity using case based discussions. A within subjects, pretest-posttest, repeated measures design was used with two-treatment levels and random assignment of individual subjects to teams of two or more professions. A convenience sample of twenty-four (n=24) undergraduate students participated, including: nursing (n=11), medicine (n=9), and pharmacy (n=4). The Interprofessional Teamwork Questionnaire was used to assess for changes in students’ perception of their functionality within the team, importance of interprofessional collaboration, comprehension of roles, and confidence in communication and collaboration. Student satisfaction was also assessed. Students reported significant improvements in their understanding of the importance of interprofessional teamwork and of the roles of nursing and medicine on the team after participation in both the high fidelity and the low fidelity simulation. However, only participants in the high fidelity simulation reported a significant improvement in their ability to function effectively as a member of the team. All students reported that both simulations were a meaningful learning experience and all students would recommend both experiences to other students. These findings suggest there is merit in both high fidelity and low fidelity simulation as a teaching and learning approach to foster teamwork among undergraduate nursing, medicine and pharmacy students. However, participation in high fidelity simulation may provide a more realistic opportunity to practice and function as an effective member of the interprofessional health care team.
  • Estimation of Human Absorbed Dose Using Compartmental Model
    Authors: M. Mousavi-Daramoroudi, H. Yousefnia, F. Abbasi-Davani, S. Zolghadri, Keywords: Compartmental modeling, human absorbed dose, 177Lu-DOTATOC, Syrian rats. DOI:10.5281/zenodo.1317236 Abstract: Dosimetry is an indispensable and precious factor in patient treatment planning to minimize the absorbed dose in vital tissues. In this study, compartmental model was used in order to estimate the human absorbed dose of 177Lu-DOTATOC from the biodistribution data in wild type rats. For this purpose, 177Lu-DOTATOC was prepared under optimized conditions and its biodistribution was studied in male Syrian rats up to 168 h. Compartmental model was applied to mathematical description of the drug behaviour in tissue at different times. Dosimetric estimation of the complex was performed using radiation absorbed dose assessment resource (RADAR). The biodistribution data showed high accumulation in the adrenal and pancreas as the major expression sites for somatostatin receptor (SSTR). While kidneys as the major route of excretion receive 0.037 mSv/MBq, pancreas and adrenal also obtain 0.039 and 0.028 mSv/MBq. Due to the usage of this method, the points of accumulated activity data were enhanced, and further information of tissues uptake was collected that it will be followed by high (or improved) precision in dosimetric calculations.

Conferences by Location