TRANSPORT SYSTEMS CONFERENCE


Transport Systems Conference is one of the leading research topics in the international research conference domain. Transport Systems is a conference track under the Transport and Environment Conference which aims to bring together leading academic scientists, researchers and research scholars to exchange and share their experiences and research results on all aspects of Transport and Environment.

internationalconference.net provides a premier interdisciplinary platform for researchers, practitioners and educators to present and discuss the most recent innovations, trends, and concerns as well as practical challenges encountered and solutions adopted in the fields of (Transport and Environment).

Transport Systems is not just a call for academic papers on the topic; it can also include a conference, event, symposium, scientific meeting, academic, or workshop.

You are welcome to SUBMIT your research paper or manuscript to Transport Systems Conference Track will be held at “Transport and Environment Conference in Barcelona, Spain in April 2020” - “Transport and Environment Conference in Istanbul, Turkey in May 2020” - “Transport and Environment Conference in San Francisco, United States in June 2020” - “Transport and Environment Conference in Paris, France in July 2020” - “Transport and Environment Conference in New York, United States in August 2020” - “Transport and Environment Conference in Tokyo, Japan in September 2020” - “Transport and Environment Conference in Zürich, Switzerland in September 2020” - “Transport and Environment Conference in Barcelona, Spain in October 2020” - “Transport and Environment Conference in San Francisco, United States in November 2020” - “Transport and Environment Conference in Istanbul, Turkey in November 2020” - “Transport and Environment Conference in Singapore, Singapore in November 2020” - “Transport and Environment Conference in Bangkok, Thailand in December 2020” - “Transport and Environment Conference in Paris, France in December 2020” .

Transport Systems is also a leading research topic on Google Scholar, Semantic Scholar, Zenedo, OpenAIRE, BASE, WorldCAT, Sherpa/RoMEO, Elsevier, Scopus, Web of Science.

VII. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

APRIL 15 - 16, 2020
BARCELONA, SPAIN

VIII. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

MAY 11 - 12, 2020
ISTANBUL, TURKEY

  • Abstracts/Full-Text Paper Submission Deadline February 27, 2020
  • Notification of Acceptance/Rejection Deadline March 12, 2020
  • Final Paper and Early Bird Registration Deadline April 01, 2020
  • CONFERENCE CODE: 20TE05TR
  • One Time Submission Deadline Reminder

IX. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

JUNE 05 - 06, 2020
SAN FRANCISCO, UNITED STATES

  • Abstracts/Full-Text Paper Submission Deadline February 27, 2020
  • Notification of Acceptance/Rejection Deadline March 12, 2020
  • Final Paper and Early Bird Registration Deadline May 06, 2020
  • CONFERENCE CODE: 20TE06US
  • One Time Submission Deadline Reminder

X. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

JULY 20 - 21, 2020
PARIS, FRANCE

XI. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

AUGUST 10 - 11, 2020
NEW YORK, UNITED STATES

  • Abstracts/Full-Text Paper Submission Deadline February 27, 2020
  • Notification of Acceptance/Rejection Deadline March 12, 2020
  • Final Paper and Early Bird Registration Deadline July 10, 2020
  • CONFERENCE CODE: 20TE08US
  • One Time Submission Deadline Reminder

XII. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

SEPTEMBER 10 - 11, 2020
TOKYO, JAPAN

  • Abstracts/Full-Text Paper Submission Deadline February 27, 2020
  • Notification of Acceptance/Rejection Deadline March 12, 2020
  • Final Paper and Early Bird Registration Deadline August 10, 2020
  • CONFERENCE CODE: 20TE09JP
  • One Time Submission Deadline Reminder

XIII. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

SEPTEMBER 16 - 17, 2020
ZÜRICH, SWITZERLAND

  • Abstracts/Full-Text Paper Submission Deadline February 27, 2020
  • Notification of Acceptance/Rejection Deadline March 12, 2020
  • Final Paper and Early Bird Registration Deadline August 17, 2020
  • CONFERENCE CODE: 20TE09CH
  • One Time Submission Deadline Reminder

XIV. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

OCTOBER 21 - 22, 2020
BARCELONA, SPAIN

  • Abstracts/Full-Text Paper Submission Deadline February 27, 2020
  • Notification of Acceptance/Rejection Deadline March 12, 2020
  • Final Paper and Early Bird Registration Deadline September 22, 2020
  • CONFERENCE CODE: 20TE10ES
  • One Time Submission Deadline Reminder

XV. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

NOVEMBER 02 - 03, 2020
SAN FRANCISCO, UNITED STATES

  • Abstracts/Full-Text Paper Submission Deadline February 27, 2020
  • Notification of Acceptance/Rejection Deadline March 12, 2020
  • Final Paper and Early Bird Registration Deadline October 05, 2020
  • CONFERENCE CODE: 20TE11US
  • One Time Submission Deadline Reminder

XVI. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

NOVEMBER 12 - 13, 2020
ISTANBUL, TURKEY

  • Abstracts/Full-Text Paper Submission Deadline February 27, 2020
  • Notification of Acceptance/Rejection Deadline March 12, 2020
  • Final Paper and Early Bird Registration Deadline October 05, 2020
  • CONFERENCE CODE: 20TE11TR
  • One Time Submission Deadline Reminder

XVII. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

NOVEMBER 19 - 20, 2020
SINGAPORE, SINGAPORE

  • Abstracts/Full-Text Paper Submission Deadline February 27, 2020
  • Notification of Acceptance/Rejection Deadline March 12, 2020
  • Final Paper and Early Bird Registration Deadline October 19, 2020
  • CONFERENCE CODE: 20TE11SG
  • One Time Submission Deadline Reminder

XVIII. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

DECEMBER 15 - 16, 2020
BANGKOK, THAILAND

  • Abstracts/Full-Text Paper Submission Deadline February 27, 2020
  • Notification of Acceptance/Rejection Deadline March 12, 2020
  • Final Paper and Early Bird Registration Deadline November 17, 2020
  • CONFERENCE CODE: 20TE12TH
  • One Time Submission Deadline Reminder

XIX. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

DECEMBER 28 - 29, 2020
PARIS, FRANCE

  • Abstracts/Full-Text Paper Submission Deadline February 27, 2020
  • Notification of Acceptance/Rejection Deadline March 12, 2020
  • Final Paper and Early Bird Registration Deadline November 26, 2020
  • CONFERENCE CODE: 20TE12FR
  • One Time Submission Deadline Reminder
FINISHED

I. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

MARCH 19 - 20, 2019
ISTANBUL, TURKEY

FINISHED

III. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

AUGUST 21 - 22, 2019
LONDON, UNITED KINGDOM

FINISHED

IV. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

OCTOBER 08 - 09, 2019
NEW YORK, UNITED STATES

FINISHED

V. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

DECEMBER 12 - 13, 2019
ROME, ITALY

FINISHED

VI. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

FEBRUARY 13 - 14, 2020
LONDON, UNITED KINGDOM

Transport and Environment Conference Call For Papers are listed below:

Previously Published Papers on "Transport Systems Conference"

  • Economic Model of Sustainable Value Chain in Passenger Waterway Transportation Service
    Authors: Maisa Sales Gama Tobias, Paulo Sérgio Lima Pereira Afonso, Keywords: value chain, sustainability, waterway transportation, cost management, cost model DOI:10.5281/zenodo. Abstract: The service of passenger waterway transportation lacks economic models that help in designing and implementing strategies to ensure its sustainability in several aspects (economic, social and environmental). The size of costs, though not the only one, is of particular importance in these models. However, traditionally, cost management has been focused only on reducing production costs, for the purpose of companies to keep prices low and gain market competitiveness. Although, with all the technological advances, and other restrictions imposed by the market in terms of service, in the case of passengers waterway transportation: intermodal competition; quality of service; or by regulatory environment for public concession and; in the aspect of business: to stay in the market with natural, demand and institutional restrictions, this view is not enough. Thus, there is an evolution of a traditional cost accounting to strategic cost management. On the other hand, it is important to consider other important dimensions and recognize that companies no longer exist in isolation, but they are part of highly integrated value and supplies chains. Therefore, this work will explore and analyze the sustainable value chain of passenger waterway transportation service using the tools of strategic cost management. The method will start from three components of analysis: (1) definition of basic elements of sustainable value chain; (2) identification of main restrictions to the chain development and aspects critical for service sustainability; (3) development of a cost model and propositions to overcome the bottlenecks found, to add value. Whether in the internal cost structure of the company; operational cost reduction strategies; in search of new markets, or to establish new partnerships or even; in the broadest level, in terms of investments in infrastructure or recommendations involving governance decisions to improve the current institutional environment. The case study will be developed in passenger transport companies located in the Lower Amazon, consolidated in this market, with defined enterprise structure of business sustainability, and who have already been willing to collaborate with the investigation. As results, it is expected to understand the cost structures that support sustainable value chains, namely, costs of activities and relevant cost objects in order to determine the cost drivers, profitability margins, cost reduction opportunities and conditions conducive to competitive advantages related to the different strategic options to cost leadership, differentiation or approach. Finally, in the model to be developed, the proper characterization of cost structure and value creation in transport processes under study may constitute reference points for future more sophisticated applied works of optimizing the resources involved and supporting the decision making, in particular with regard to operations research and quantitative methods more robust.
  • Considering Aerosol Processes in Nuclear Transport Package Containment Safety Cases
    Authors: Andrew Cummings, Rhianne Boag, Sarah Bryson, Gordon Turner, Keywords: Aerosol processes, Brownian coagulation, gravitational settling, transport regulations. DOI:10.5281/zenodo. Abstract: Packages designed for transport of radioactive material must satisfy rigorous safety regulations specified by the International Atomic Energy Agency (IAEA). Higher Activity Waste (HAW) transport packages have to maintain containment of their contents during normal and accident conditions of transport (NCT and ACT). To ensure containment criteria is satisfied these packages are required to be leak-tight in all transport conditions to meet allowable activity release rates. Package design safety reports are the safety cases that provide the claims, evidence and arguments to demonstrate that packages meet the regulations and once approved by the competent authority (in the UK this is the Office for Nuclear Regulation) a licence to transport radioactive material is issued for the package(s). The standard approach to demonstrating containment in the RWM transport safety case is set out in BS EN ISO 12807. In this document a method for measuring a leak rate from the package is explained by way of a small interspace test volume situated between two O-ring seals on the underside of the package lid. The interspace volume is pressurised and a pressure drop measured. A small interspace test volume makes the method more sensitive enabling the measurement of smaller leak rates. By ascertaining the activity of the contents, identifying a releasable fraction of material and by treating that fraction of material as a gas, allowable leak rates for NCT and ACT are calculated. The adherence to basic safety principles in ISO12807 is very pessimistic and current practice in the demonstration of transport safety, which is accepted by the UK regulator. It is UK government policy that management of HAW will be through geological disposal. It is proposed that the intermediate level waste be transported to the geological disposal facility (GDF) in large cuboid packages. This poses a challenge for containment demonstration because such packages will have long seals and therefore large interspace test volumes. There is also uncertainty on the releasable fraction of material within the package ullage space. This is because the waste may be in many different forms which makes it difficult to define the fraction of material released by the waste package. Additionally because of the large interspace test volume, measuring the calculated leak rates may not be achievable. For this reason a justification for a lower releasable fraction of material is sought. This paper considers the use of aerosol processes to reduce the releasable fraction for both NCT and ACT. It reviews the basic coagulation and removal processes and applies the dynamic aerosol balance equation. The proposed solution includes only the most well understood physical processes namely; Brownian coagulation and gravitational settling. Other processes have been eliminated either on the basis that they would serve to reduce the release to the environment further (pessimistically in keeping with the essence of nuclear transport safety cases) or that they are not credible in the conditions of transport considered.
  • Probabilistic Life Cycle Assessment of the Nano Membrane Toilet
    Authors: A. Anastasopoulou, A. Kolios, T. Somorin, A. Sowale, Y. Jiang, B. Fidalgo, A. Parker, L. Williams, M. Collins, E. J. McAdam, S. Tyrrel, Keywords: Sanitation systems, nano membrane toilet, LCA, stochastic uncertainty analysis, Monte Carlo Simulations, artificial neural network. DOI:10.5281/zenodo.1317216 Abstract: Developing countries are nowadays confronted with great challenges related to domestic sanitation services in view of the imminent water scarcity. Contemporary sanitation technologies established in these countries are likely to pose health risks unless waste management standards are followed properly. This paper provides a solution to sustainable sanitation with the development of an innovative toilet system, called Nano Membrane Toilet (NMT), which has been developed by Cranfield University and sponsored by the Bill & Melinda Gates Foundation. The particular technology converts human faeces into energy through gasification and provides treated wastewater from urine through membrane filtration. In order to evaluate the environmental profile of the NMT system, a deterministic life cycle assessment (LCA) has been conducted in SimaPro software employing the Ecoinvent v3.3 database. The particular study has determined the most contributory factors to the environmental footprint of the NMT system. However, as sensitivity analysis has identified certain critical operating parameters for the robustness of the LCA results, adopting a stochastic approach to the Life Cycle Inventory (LCI) will comprehensively capture the input data uncertainty and enhance the credibility of the LCA outcome. For that purpose, Monte Carlo simulations, in combination with an artificial neural network (ANN) model, have been conducted for the input parameters of raw material, produced electricity, NOX emissions, amount of ash and transportation of fertilizer. The given analysis has provided the distribution and the confidence intervals of the selected impact categories and, in turn, more credible conclusions are drawn on the respective LCIA (Life Cycle Impact Assessment) profile of NMT system. Last but not least, the specific study will also yield essential insights into the methodological framework that can be adopted in the environmental impact assessment of other complex engineering systems subject to a high level of input data uncertainty.
  • Critical Velocities for Particle Transport from Experiments and CFD Simulations
    Authors: Sajith Sajeev, Brenton McLaury, Siamack Shirazi, Keywords: Particle transport, critical velocity, CFD, DEM. DOI:10.5281/zenodo.1131099 Abstract: In the petroleum industry, solid particles are often present along with the produced fluids. It is imperative to keep particles from accumulating in flow lines. In this study, various experiments are conducted to study sand particle transport, where critical velocity is defined as the average fluid velocity to keep particles continuously moving. Many parameters related to the fluid, particles and pipe affect the transport process. Experimental results are presented varying the particle concentration. Additionally, CFD simulations using a discrete element modeling (DEM) approach are presented to compare with experimental result.
  • A Comparative Analysis of Solid Waste Treatment Technologies on Cost and Environmental Basis
    Authors: Nesli Aydin, Keywords: Decision making, economic viability, environmentally friendliness, stakeholder, waste management systems. DOI:10.5281/zenodo.1130411 Abstract: Waste management decision making in developing countries has moved towards being more pragmatic, transparent, sustainable and comprehensive. Turkey is required to make its waste related legislation compatible with European Legislation as it is a candidate country of the European Union. Improper Turkish practices such as open burning and open dumping practices must be abandoned urgently, and robust waste management systems have to be structured. The determination of an optimum waste management system in any region requires a comprehensive analysis in which many criteria are taken into account by stakeholders. In conducting this sort of analysis, there are two main criteria which are evaluated by waste management analysts; economic viability and environmentally friendliness. From an analytical point of view, a central characteristic of sustainable development is an economic-ecological integration. It is predicted that building a robust waste management system will need significant effort and cooperation between the stakeholders in developing countries such as Turkey. In this regard, this study aims to provide data regarding the cost and environmental burdens of waste treatment technologies such as an incinerator, an autoclave (with different capacities), a hydroclave and a microwave coupled with updated information on calculation methods, and a framework for comparing any proposed scenario performances on a cost and environmental basis.
  • Occurrence of High Nocturnal Surface Ozone at a Tropical Urban Area
    Authors: S. Dey, P. Sibanda, S. Gupta, A. Chakraborty, Keywords: Nocturnal ozone, planetary boundary layer, horizontal transport, meteorology, urban area. DOI:10.5281/zenodo.1339752 Abstract: The occurrence of high nocturnal surface ozone over a tropical urban area (23̊ 32′16.99″ N and 87̊ 17′ 38.95″ E) is analyzed in this paper. Five incidences of nocturnal ozone maxima are recorded during the observational span of two years (June, 2013 to May, 2015). The maximum and minimum values of the surface ozone during these five occasions are 337.630 μg/m3 and 13.034 μg/m3 respectively. HYSPLIT backward trajectory analyses and wind rose diagrams support the horizontal transport of ozone from distant polluted places. Planetary boundary layer characteristics, concentration of precursor (NO2) and meteorology are found to play important role in the horizontal and vertical transport of surface ozone during nighttime.
  • Moroccan Mountains: Forest Ecosystems and Biodiversity Conservation Strategies
    Authors: Mohammed Sghir Taleb, Keywords: Mountain, forest, ecosystems, conservation, Morocco. DOI:10.5281/zenodo.1339484 Abstract: Forest ecosystems in Morocco are subject increasingly to natural and human pressures. Conscious of this problem, Morocco set a strategy that focuses on programs of in-situ and ex-situ biodiversity conservation. This study is the result of a synthesis of various existing studies on biodiversity and forest ecosystems. It gives an overview of Moroccan mountain forest ecosystems and flora diversity. It also focuses on the efforts made by Morocco to conserve and sustainably manage biodiversity.
  • Analysis of the CO2 Emissions of Public Passenger Transport in Tianjin City of China
    Authors: Tao Zhao, Xianshuo Xu, Keywords: Public passenger transport, carbon emissions, countermeasures. DOI:10.5281/zenodo.1126503 Abstract: Low-carbon public passenger transport is an important part of low carbon city. The CO2 emissions of public passenger transport in Tianjin from 1995 to 2010 are estimated with IPCC CO2 counting method, which shows that the total CO2 emissions of Tianjin public passenger transport have gradually become stable at 1,425.1 thousand tons. And then the CO2 emissions of the buses, taxies, and rail transits are calculated respectively. A CO2 emission of 829.9 thousand tons makes taxies become the largest CO2 emissions source among the public passenger transport in Tianjin. Combining with passenger volume, this paper analyzes the CO2 emissions proportion of the buses, taxies, and rail transits compare the passenger transport rate with the proportion of CO2 emissions, as well as the CO2 emissions change of per 10,000 people. The passenger volume proportion of bus among the three public means of transport is 72.62% which is much higher than its CO2 emissions proportion of 36.01%, with the minimum number of CO2 emissions per 10,000 people of 4.90 tons. The countermeasures to reduce CO2 emissions of public passenger transport in Tianjin are to develop rail transit, update vehicles and use alternative fuel vehicles.
  • Integration GIS–SCADA Power Systems to Enclosure Air Dispersion Model
    Authors: Ibrahim Shaker, Amr El Hossany, Moustafa Osman, Mohamed El Raey, Keywords: Air dispersion model, integration power system, SCADA systems, GIS system, environmental management. DOI:10.5281/zenodo.1126243 Abstract: This paper will explore integration model between GIS–SCADA system and enclosure quantification model to approach the impact of failure-safe event. There are real demands to identify spatial objects and improve control system performance. Nevertheless, the employed methodology is predicting electro-mechanic operations and corresponding time to environmental incident variations. Open processing, as object systems technology, is presented for integration enclosure database with minimal memory size and computation time via connectivity drivers such as ODBC:JDBC during main stages of GIS–SCADA connection. The function of Geographic Information System is manipulating power distribution in contrast to developing issues. In other ward, GIS-SCADA systems integration will require numerical objects of process to enable system model calibration and estimation demands, determine of past events for analysis and prediction of emergency situations for response training.
  • Cost Analysis of Hybrid Wind Energy Generating System Considering CO2 Emissions
    Authors: M. A. Badr, M.N. El Kordy, A. N. Mohib, M. M. Ibrahim, Keywords: Hybrid wind turbine systems, remote areas electrification, simulation of hybrid energy systems, techno-economic study. DOI:10.5281/zenodo.1124289 Abstract: The basic objective of the research is to study the effect of hybrid wind energy on the cost of generated electricity considering the cost of reduction CO2 emissions. The system consists of small wind turbine(s), storage battery bank and a diesel generator (W/D/B). Using an optimization software package, different system configurations are investigated to reach optimum configuration based on the net present cost (NPC) and cost of energy (COE) as economic optimization criteria. The cost of avoided CO2 is taken into consideration. The system is intended to supply the electrical load of a small community (gathering six families) in a remote Egyptian area. The investigated system is not connected to the electricity grid and may replace an existing conventional diesel powered electric supply system to reduce fuel consumption and CO2 emissions. The simulation results showed that W/D energy system is more economic than diesel alone. The estimated COE is 0.308$/kWh and extracting the cost of avoided CO2, the COE reached 0.226 $/kWh which is an external benefit of wind turbine, as there are no pollutant emissions through operational phase.