ELECTRIC VEHICLES CONFERENCE


Electric Vehicles Conference is one of the leading research topics in the international research conference domain. Electric Vehicles is a conference track under the Transport and Environment Conference which aims to bring together leading academic scientists, researchers and research scholars to exchange and share their experiences and research results on all aspects of Transport and Environment.

internationalconference.net provides a premier interdisciplinary platform for researchers, practitioners and educators to present and discuss the most recent innovations, trends, and concerns as well as practical challenges encountered and solutions adopted in the fields of (Transport and Environment).

Electric Vehicles is not just a call for academic papers on the topic; it can also include a conference, event, symposium, scientific meeting, academic, or workshop.

You are welcome to SUBMIT your research paper or manuscript to Electric Vehicles Conference Track will be held at .

Electric Vehicles is also a leading research topic on Google Scholar, Semantic Scholar, Zenedo, OpenAIRE, BASE, WorldCAT, Sherpa/RoMEO, Elsevier, Scopus, Web of Science.

FINISHED

I. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

MARCH 19 - 20, 2019
ISTANBUL, TURKEY

FINISHED

III. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

AUGUST 21 - 22, 2019
LONDON, UNITED KINGDOM

FINISHED

IV. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

OCTOBER 08 - 09, 2019
NEW YORK, UNITED STATES

FINISHED

V. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

DECEMBER 12 - 13, 2019
ROME, ITALY

FINISHED

VI. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

FEBRUARY 13 - 14, 2020
LONDON, UNITED KINGDOM

FINISHED

VII. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

APRIL 15 - 16, 2020
BARCELONA, SPAIN

FINISHED

VIII. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

MAY 11 - 12, 2020
ISTANBUL, TURKEY

FINISHED

IX. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

JUNE 05 - 06, 2020
SAN FRANCISCO, UNITED STATES

FINISHED

X. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

JULY 20 - 21, 2020
PARIS, FRANCE

FINISHED

XI. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

AUGUST 10 - 11, 2020
NEW YORK, UNITED STATES

FINISHED

XII. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

SEPTEMBER 10 - 11, 2020
TOKYO, JAPAN

FINISHED

XIII. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

SEPTEMBER 16 - 17, 2020
ZÜRICH, SWITZERLAND

FINISHED

XIV. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

OCTOBER 21 - 22, 2020
BARCELONA, SPAIN

FINISHED

XV. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

NOVEMBER 02 - 03, 2020
SAN FRANCISCO, UNITED STATES

FINISHED

XVI. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

NOVEMBER 12 - 13, 2020
ISTANBUL, TURKEY

FINISHED

XVII. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

NOVEMBER 19 - 20, 2020
SINGAPORE, SINGAPORE

FINISHED

XVIII. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

DECEMBER 15 - 16, 2020
BANGKOK, THAILAND

FINISHED

XIX. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

DECEMBER 28 - 29, 2020
PARIS, FRANCE

FINISHED

XX. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

FEBRUARY 13 - 14, 2021
LONDON, UNITED KINGDOM

FINISHED

XXI. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

APRIL 15 - 16, 2021
BARCELONA, SPAIN

FINISHED

XXII. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

MAY 11 - 12, 2021
ISTANBUL, TURKEY

FINISHED

XXIII. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

JUNE 05 - 06, 2021
SAN FRANCISCO, UNITED STATES

FINISHED

XXIV. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

JULY 20 - 21, 2021
PARIS, FRANCE

FINISHED

XXV. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

AUGUST 10 - 11, 2021
NEW YORK, UNITED STATES

FINISHED

XXVI. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

SEPTEMBER 10 - 11, 2021
TOKYO, JAPAN

FINISHED

XXVII. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

SEPTEMBER 16 - 17, 2021
ZÜRICH, SWITZERLAND

FINISHED

XXVIII. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

OCTOBER 21 - 22, 2021
BARCELONA, SPAIN

FINISHED

XXIX. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

NOVEMBER 02 - 03, 2021
SAN FRANCISCO, UNITED STATES

FINISHED

XXX. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

NOVEMBER 12 - 13, 2021
ISTANBUL, TURKEY

FINISHED

XXXI. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

NOVEMBER 19 - 20, 2021
SINGAPORE, SINGAPORE

FINISHED

XXXII. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

DECEMBER 15 - 16, 2021
BANGKOK, THAILAND

FINISHED

XXXIII. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

DECEMBER 28 - 29, 2021
PARIS, FRANCE

Transport and Environment Conference Call For Papers are listed below:

Previously Published Papers on "Electric Vehicles Conference"

  • A Commercial Building Plug Load Management System That Uses Internet of Things Technology to Automatically Identify Plugged-In Devices and Their Locations
    Authors: Amy LeBar, Kim L. Trenbath, Bennett Doherty, William Livingood, Keywords: commercial buildings, grid-interactive efficient buildings, miscellaneous electric loads, plug loads, plug load management DOI:10.5281/zenodo. Abstract: Plug and process loads (PPLs) account for a large portion of U.S. commercial building energy use. There is a huge potential to reduce whole building consumption by targeting PPLs for energy savings measures or implementing some form of plug load management (PLM). Despite this potential, there has yet to be a widely adopted commercial PLM technology. This paper describes the Automatic Type and Location Identification System (ATLIS), a PLM system framework with automatic and dynamic load detection (ADLD). ADLD gives PLM systems the ability to automatically identify devices as they are plugged into the outlets of a building. The ATLIS framework takes advantage of smart, connected devices to identify device locations in a building, meter and control their power, and communicate this information to a central database. ATLIS includes five primary capabilities: location identification, communication, control, energy metering, and data storage. A laboratory proof of concept (PoC) demonstrated all but the energy metering capability, and these capabilities were validated using a series of system tests. The PoC was able to identify when a device was plugged into an outlet and the location of the device in the building. When a device was moved, the PoC’s dashboard and database were automatically updated with the new location. The PoC implemented controls to devices from the system dashboard so that devices maintained correct schedules regardless of where they were plugged in within the building. ATLIS’s primary technology application is improved PLM, but other applications include asset management, energy audits, and interoperability for grid-interactive efficient buildings. An ATLIS-based system could also be used to direct power to critical devices, such as ventilators, during a brownout or blackout. Such a framework is an opportunity to make PLM more widespread and reduce the amount of energy consumed by PPLs in current and future commercial buildings.
  • Geophysical Investigation for Pre-Engineering Construction Works in Part of Ilorin, Northcentral Nigeria
    Authors: O. Ologe, A. I. Augie, Keywords: Competence rating, geoelectric, pseudosection, soil, vertical electrical sounding. DOI:10.5281/zenodo. Abstract: A geophysical investigation involving geoelectric depths sounding has been conducted as pre-foundation study in part of Ilorin, Nigeria. The area is underlain by the Precambrian basement complex rocks. 15 sounding stations were established along five traverses. The Vertical Electrical Sounding (VES) (three-five) conducted along each of the traverses was subjected to computer iteration using IP2Win software. Three -five subsurface geologic layers were delineated in the study area. These include the topsoil with resistivity and thickness values ranging from 103 Ωm-210 Ωm and 0 m-1 m; lateritic (117 Ωm-590 Ωm and 1 m-4.7 m); sandy clay (137 – 859 Ωm and 2.9 m – 4.3 m); weathered (60.5 Ωm to 2539 Ωm and 3,2 m-10 m) and fresh basement (2253-∞ and 7.1 m-∞) respectively. The resistivity pseudosection shows continuous high resistivity zone on the surface. Resistivity of this layer from depth 0-5 m varies from 300-800 Ωm along traverse 1 and 2. Hence, this layer is rated competent as it has the ability to support engineering structure. However, along traverse 1, very low resistive layer occurs between VES 5 and 15 with resistivity values ranging from 30 Ωm-70 Ωm. This layer was rated incompetent based on the competence rating. This study revealed the importance of geophysical survey as a pre-construction engineering survey at any civil engineering site since it can reliably evaluate the competence of the subsurface geomaterials.
  • The Effect of Acrylic Gel Grouting on Groundwater in Porous Media
    Authors: S. Wagner, C. Boley, Y. Forouzandeh, Keywords: Acrylic gel grouting, dynamic rheology study, electric conductivity, total organic carbon. DOI:10.5281/zenodo. Abstract: When digging excavations, groundwater bearing layers are often encountered. In order to allow anhydrous excavation, soil groutings are carried out, which form a water-impermeable layer. As it is injected into groundwater areas, the effects of the materials used on the environment must be known. Developing an eco-friendly, economical and low viscous acrylic gel which has a sealing effect on groundwater is therefore a significant task. At this point the study begins. Basic investigations with the rheometer and a reverse column experiment have been performed with different mixing ratios of an acrylic gel. A dynamic rheology study was conducted to determine the time at which the gel still can be processed and the maximum gel strength is reached. To examine the effect of acrylic gel grouting on determine the parameters pH value, turbidity, electric conductivity, and total organic carbon on groundwater, an acrylic gel was injected in saturated sand filled the column. The structure was rinsed with a constant flow and the eluate was subsequently examined. The results show small changes in pH values and turbidity but there is a dependency between electric conductivity and total organic carbon. The curves of the two parameters react at the same time, which means that the electrical conductivity in the eluate can be measured constantly until the maximum is reached and only then must total organic carbon (TOC) samples be taken.
  • Simulation and Analysis of Passive Parameters of Building in eQuest: A Case Study in Istanbul, Turkey
    Authors: Mahdiyeh Zafaranchi, Keywords: Efficient building, electric and gas consumption, eQuest, passive parameters. DOI:10.5281/zenodo. Abstract: With rapid development of urbanization and improvement of living standards in the world, energy consumption and carbon emissions of the building sector are expected to increase in the near future; because of that, energy-saving issues have become more important among the engineers. Besides, the building sector is a major contributor to energy consumption and carbon emissions. The concept of efficient building appeared as a response to the need for reducing energy demand in this sector which has the main purpose of shifting from standard buildings to low-energy buildings. Although energy-saving should happen in all steps of a building during the life cycle (material production, construction, demolition), the main concept of efficient energy building is saving energy during the life expectancy of a building by using passive and active systems, and should not sacrifice comfort and quality to reach these goals. The main aim of this study is to investigate passive strategies (do not need energy consumption or use renewable energy) to achieve energy-efficient buildings. Energy retrofit measures were explored by eQuest software using a case study as a base model. The study investigates predictive accuracy for the major factors like thermal transmittance (U-value) of the material, windows, shading devices, thermal insulation, rate of the exposed envelope, window/wall ration, lighting system in the energy consumption of the building. The base model was located in Istanbul, Turkey. The impact of eight passive parameters on energy consumption had been indicated. After analyzing the base model by eQuest, a final scenario was suggested which had a good energy performance. The results showed a decrease in the U-values of materials, the rate of exposing buildings, and windows had a significant effect on energy consumption. Finally, savings in electric consumption of about 10.5%, and gas consumption by about 8.37% in the suggested model were achieved annually.
  • Preliminary Geophysical Assessment of Soil Contaminants around Wacot Rice Factory Argungu, North-Western Nigeria
    Authors: A. I. Augie, Y. Alhassan, U. Z. Magawata, Keywords: Contaminant, leachate, soil, groundwater, 2D, electrical, resistivity, Argungu. DOI:10.5281/zenodo. Abstract: Geophysical investigation was carried out at wacot rice factory Argungu north-western Nigeria, using the 2D electrical resistivity method. The area falls between latitude 12˚44′23ʺN to 12˚44′50ʺN and longitude 4032′18′′E to 4032′39′′E covering a total area of about 1.85 km. Two profiles were carried out with Wenner configuration using resistivity meter (Ohmega). The data obtained from the study area were modeled using RES2DIVN software which gave an automatic interpretation of the apparent resistivity data. The inverse resistivity models of the profiles show the high resistivity values ranging from 208 Ωm to 651 Ωm. These high resistivity values in the overburden were due to dryness and compactness of the strata that lead to consolidation, which is an indication that the area is free from leachate contaminations. However, from the inverse model, there are regions of low resistivity values (1 Ωm to 18 Ωm), these zones were observed and identified as clayey and the most contaminated zones. The regions of low resistivity thereby indicated the leachate plume or the highly leachate concentrated zones due to similar resistivity values in both clayey and leachate. The regions of leachate are mainly from the factory into the surrounding area and its groundwater. The maximum leachate infiltration was found at depths 1 m to 15.9 m (P1) and 6 m to 15.9 m (P2) vertically, as well as distance along the profiles from 67 m to 75 m (P1), 155 m to 180 m (P1), and 115 m to 192 m (P2) laterally.
  • Scope, Relevance and Sustainability of Decentralized Renewable Energy Systems in Developing Economies: Imperatives from Indian Case Studies
    Authors: Harshit Vallecha, Prabha Bhola, Keywords: Climate change, decentralized generation, electricity access, renewable energy. DOI:10.5281/zenodo.3299469 Abstract: ‘Energy for all’, is a global issue of concern for the past many years. Despite the number of technological advancements and innovations, significant numbers of people are living without access to electricity around the world. India, an emerging economy, tops the list of nations having the maximum number of residents living off the grid, thus raising global attention in past few years to provide clean and sustainable energy access solutions to all of its residents. It is evident from developed economies that centralized planning and electrification alone is not sufficient for meeting energy security. Implementation of off-grid and consumer-driven energy models like Decentralized Renewable Energy (DRE) systems have played a significant role in meeting the national energy demand in developed nations. Cases of DRE systems have been reported in developing countries like India for the past few years. This paper attempts to profile the status of DRE projects in the Indian context with their scope and relevance to ensure universal electrification. Diversified cases of DRE projects, particularly solar, biomass and micro hydro are identified in different Indian states. Critical factors affecting the sustainability of DRE projects are extracted with their interlinkages in the context of developers, beneficiaries and promoters involved in such projects. Socio-techno-economic indicators are identified through similar cases in the context of DRE projects. Exploratory factor analysis is performed to evaluate the critical sustainability factors followed by regression analysis to establish the relationship between the dependent and independent factors. The generated EFA-Regression model provides a basis to develop the sustainability and replicability framework for broader coverage of DRE projects in developing nations in order to attain the goal of universal electrification with least carbon emissions.
  • Groundwater Potential Zone Identification in Unconsolidated Aquifer Using Geophysical Techniques around Tarbela Ghazi, District Haripur, Pakistan
    Authors: Syed Muzyan Shahzad, Liu Jianxin, Asim Shahzad, Muhammad Sharjeel Raza, Sun Ya, Fanidi Meryem, Keywords: Geoelectric layers, Dar Zarrouk parameters, Aquifer, Electro-stratigraphic. DOI:10.5281/zenodo.1317326 Abstract: Electrical resistivity investigation was conducted in vicinity of Tarbela Ghazi, in order to study the subsurface layer with a view of determining the depth to the aquifer and thickness of groundwater potential zones. Vertical Electrical Sounding (VES) using Schlumberger array was carried out at 16 VES stations. Well logging data at four tube wells have been used to mark the super saturated zones with great discharge rate. The present paper shows a geoelectrical identification of the lithology and an estimate of the relationship between the resistivity and Dar Zarrouk parameters (transverse unit resistance and longitudinal unit conductance). The VES results revealed both homogeneous and heterogeneous nature of the subsurface strata. Aquifer is unconfined to confine in nature, and at few locations though perched aquifer has been identified, groundwater potential zones are developed in unconsolidated deposits layers and more than seven geo-electric layers are observed at some VES locations. Saturated zones thickness ranges from 5 m to 150 m, whereas at few area aquifer is beyond 150 m thick. The average anisotropy, transvers resistance and longitudinal conductance values are 0.86 %, 35750.9821 Ω.m2, 0.729 Siemens, respectively. The transverse unit resistance values fluctuate all over the aquifer system, whereas below at particular depth high values are observed, that significantly associated with the high transmissivity zones. The groundwater quality in all analyzed samples is below permissible limit according to World Health Standard (WHO).
  • Valorization of Residues from Forest Industry for the Generation of Energy
    Authors: M. A. Amezcua-Allieri, E. Torres, J. A. Zermeño Eguía-Lis, M. Magdaleno, L. A. Melgarejo, E. Palmerín, A. Rosas, D. López, J. Aburto, Keywords: Bioenergy, forest waste, life-cycle assessment, waste-to-energy, electricity. DOI:10.5281/zenodo.1316768 Abstract: The use of biomass to produce renewable energy is one of the forms that can be used to reduce the impact of energy production. Like any other energy resource, there are limitations for biomass use, and it must compete not only with fossil fuels but also with other renewable energy sources such as solar or wind energy. Combustion is currently the most efficient and widely used waste-to-energy process, in the areas where direct use of biomass is possible, without the need to make large transfers of raw material. Many industrial facilities can use agricultural or forestry waste, straw, chips, bagasse, etc. in their thermal systems without making major transformations or adjustments in the feeding to the ovens, making this waste an attractive and cost-effective option in terms of availability, access, and costs. In spite of the facilities and benefits, the environmental reasons (emission of gases and particulate material) are decisive for its use for energy purpose. This paper describes a valorization of residues from forest industry to generate energy, using a case study.
  • Studies on the Feasibility of Cow Dung as a Non-Conventional Energy Source
    Authors: Raj Kumar Rajak, Bharat Mishra, Keywords: Bio-batteries, electricity, cow dung, electrodes, non-conventional. DOI:10.5281/zenodo.1316337 Abstract: Bio-batteries represent an entirely new long-term, reasonable, reachable and ecofriendly approach to produce sustainable energy. In the present experimental work, we have studied the effect of generation of power by bio-battery using different electrode pairs. The tests show that it is possible to generate electricity using cow dung as an electrolyte. C-Mg electrode pair shows maximum voltage and SCC (Short Circuit Current) while C-Zn electrode pair shows less OCV (Open Circuit Voltage) and SCC. We have chosen C-Zn electrodes because Mg electrodes are not economical. By the studies of different electrodes and cow dung, it is found that C-Zn electrode battery is more suitable. This result shows that the bio-batteries have the potency to full fill the need of electricity demand for lower energy equipment.
  • Evaluation of NH3-Slip from Diesel Vehicles Equipped with Selective Catalytic Reduction Systems by Neural Networks Approach
    Authors: Mona Lisa M. Oliveira, Nara A. Policarpo, Ana Luiza B. P. Barros, Carla A. Silva, Keywords: Ammonia slip, neural-network, vehicles emissions, SCR-NOx. DOI:10.5281/zenodo.1316319 Abstract: Selective catalytic reduction systems for nitrogen oxides reduction by ammonia has been the chosen technology by most of diesel vehicle (i.e. bus and truck) manufacturers in Brazil, as also in Europe. Furthermore, at some conditions, over-stoichiometric ammonia availability is also needed that increases the NH3 slips even more. Ammonia (NH3) by this vehicle exhaust aftertreatment system provides a maximum efficiency of NOx removal if a significant amount of NH3 is stored on its catalyst surface. In the other words, the practice shows that slightly less than 100% of the NOx conversion is usually targeted, so that the aqueous urea solution hydrolyzes to NH3 via other species formation, under relatively low temperatures. This paper presents a model based on neural networks integrated with a road vehicle simulator that allows to estimate NH3-slip emission factors for different driving conditions and patterns. The proposed model generates high NH3slips which are not also limited in Brazil, but more efforts needed to be made to elucidate the contribution of vehicle-emitted NH3 to the urban atmosphere.

Conferences by Location