CLEAN FUELS AND VEHICLES CONFERENCE


Clean Fuels and Vehicles Conference is one of the leading research topics in the international research conference domain. Clean Fuels and Vehicles is a conference track under the Transport and Environment Conference which aims to bring together leading academic scientists, researchers and research scholars to exchange and share their experiences and research results on all aspects of Transport and Environment.

internationalconference.net provides a premier interdisciplinary platform for researchers, practitioners and educators to present and discuss the most recent innovations, trends, and concerns as well as practical challenges encountered and solutions adopted in the fields of (Transport and Environment).

Clean Fuels and Vehicles is not just a call for academic papers on the topic; it can also include a conference, event, symposium, scientific meeting, academic, or workshop.

You are welcome to SUBMIT your research paper or manuscript to Clean Fuels and Vehicles Conference Track will be held at .

Clean Fuels and Vehicles is also a leading research topic on Google Scholar, Semantic Scholar, Zenedo, OpenAIRE, BASE, WorldCAT, Sherpa/RoMEO, Elsevier, Scopus, Web of Science.

FINISHED

I. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

MARCH 19 - 20, 2019
ISTANBUL, TURKEY

FINISHED

III. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

AUGUST 21 - 22, 2019
LONDON, UNITED KINGDOM

FINISHED

IV. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

OCTOBER 08 - 09, 2019
NEW YORK, UNITED STATES

FINISHED

V. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

DECEMBER 12 - 13, 2019
ROME, ITALY

FINISHED

VI. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

FEBRUARY 13 - 14, 2020
LONDON, UNITED KINGDOM

FINISHED

VII. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

APRIL 15 - 16, 2020
BARCELONA, SPAIN

FINISHED

VIII. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

MAY 11 - 12, 2020
ISTANBUL, TURKEY

FINISHED

IX. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

JUNE 05 - 06, 2020
SAN FRANCISCO, UNITED STATES

FINISHED

X. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

JULY 20 - 21, 2020
PARIS, FRANCE

FINISHED

XI. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

AUGUST 10 - 11, 2020
NEW YORK, UNITED STATES

FINISHED

XII. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

SEPTEMBER 10 - 11, 2020
TOKYO, JAPAN

FINISHED

XIII. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

SEPTEMBER 16 - 17, 2020
ZÜRICH, SWITZERLAND

FINISHED

XIV. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

OCTOBER 21 - 22, 2020
BARCELONA, SPAIN

FINISHED

XV. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

NOVEMBER 02 - 03, 2020
SAN FRANCISCO, UNITED STATES

FINISHED

XVI. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

NOVEMBER 12 - 13, 2020
ISTANBUL, TURKEY

FINISHED

XVII. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

NOVEMBER 19 - 20, 2020
SINGAPORE, SINGAPORE

FINISHED

XVIII. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

DECEMBER 15 - 16, 2020
BANGKOK, THAILAND

FINISHED

XIX. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

DECEMBER 28 - 29, 2020
PARIS, FRANCE

FINISHED

XX. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

FEBRUARY 13 - 14, 2021
LONDON, UNITED KINGDOM

FINISHED

XXI. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

APRIL 15 - 16, 2021
BARCELONA, SPAIN

FINISHED

XXII. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

MAY 11 - 12, 2021
ISTANBUL, TURKEY

FINISHED

XXIII. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

JUNE 05 - 06, 2021
SAN FRANCISCO, UNITED STATES

FINISHED

XXIV. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

JULY 20 - 21, 2021
PARIS, FRANCE

FINISHED

XXV. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

AUGUST 10 - 11, 2021
NEW YORK, UNITED STATES

FINISHED

XXVI. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

SEPTEMBER 10 - 11, 2021
TOKYO, JAPAN

FINISHED

XXVII. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

SEPTEMBER 16 - 17, 2021
ZÜRICH, SWITZERLAND

FINISHED

XXVIII. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

OCTOBER 21 - 22, 2021
BARCELONA, SPAIN

FINISHED

XXIX. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

NOVEMBER 02 - 03, 2021
SAN FRANCISCO, UNITED STATES

FINISHED

XXX. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

NOVEMBER 12 - 13, 2021
ISTANBUL, TURKEY

FINISHED

XXXI. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

NOVEMBER 19 - 20, 2021
SINGAPORE, SINGAPORE

FINISHED

XXXII. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

DECEMBER 15 - 16, 2021
BANGKOK, THAILAND

FINISHED

XXXIII. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

DECEMBER 28 - 29, 2021
PARIS, FRANCE

Transport and Environment Conference Call For Papers are listed below:

Previously Published Papers on "Clean Fuels and Vehicles Conference"

  • Effect of Density on the Shear Modulus and Damping Ratio of Saturated Sand in Small Strain
    Authors: M. Kakavand, S. A. Naeini, Keywords: Dynamic properties, shear modulus, damping ratio, clean sand, density, confining pressure, resonant column/torsional simple shear. DOI:10.5281/zenodo.3593244 Abstract: Dynamic properties of soil in small strains, especially for geotechnical engineers, are important for describing the behavior of soil and estimation of the earth structure deformations and structures, especially significant structures. This paper presents the effect of density on the shear modulus and damping ratio of saturated clean sand at various isotropic confining pressures. For this purpose, the specimens were compared with two different relative densities, loose Dr = 30% and dense Dr = 70%. Dynamic parameters were attained from a series of consolidated undrained fixed – free type torsional resonant column tests in small strain. Sand No. 161 is selected for this paper. The experiments show that by increasing sand density and confining pressure, the shear modulus increases and the damping ratio decreases.
  • Alternative Acidizing Fluids and Their Impact on the Southern Algerian Shale Formations
    Authors: Rezki Akkal, Mohamed Khodja, Slimane Azzi, Keywords: Acidizing, Hassi-Messaoud reservoir, tube clean, matrix stimulation. DOI:10.5281/zenodo.1340434 Abstract: Acidification is a technique used in oil reservoirs to improve annual production, reduce the skin and increase the pressure of an oil well while eliminating the formation damage that occurs during the drilling process, completion and, amongst others, to create new channels allowing the easy circulation of oil around a producing well. This is achieved by injecting an acidizing fluid at a relatively low pressure to prevent fracturing formation. The treatment fluid used depends on the type and nature of the reservoir rock traversed as well as its petrophysical properties. In order to understand the interaction mechanisms between the treatment fluids used for the reservoir rock acidizing, several candidate wells for stimulation were selected in the large Hassi Messaoud deposit in southern Algeria. The stimulation of these wells is completed using different fluids composed mainly of HCl acid with other additives such as corrosion inhibitors, clay stabilizers and iron controllers. These treatment fluids are injected over two phases, namely with clean tube (7.5% HCl) and matrix aidizing with HCl (15%). The stimulation results obtained are variable according to the type of rock traversed and its mineralogical composition. These results show that there has been an increase in production flow and head pressure respectively from 1.99 m3 / h to 3.56 m3 / h and from 13 Kgf / cm2 to 20 kgf / cm2 in the sands formation having good petrophysical properties of (porosity = 16%) and low amount of clay (Vsh = 6%).
  • Evaluation of NH3-Slip from Diesel Vehicles Equipped with Selective Catalytic Reduction Systems by Neural Networks Approach
    Authors: Mona Lisa M. Oliveira, Nara A. Policarpo, Ana Luiza B. P. Barros, Carla A. Silva, Keywords: Ammonia slip, neural-network, vehicles emissions, SCR-NOx. DOI:10.5281/zenodo.1316319 Abstract: Selective catalytic reduction systems for nitrogen oxides reduction by ammonia has been the chosen technology by most of diesel vehicle (i.e. bus and truck) manufacturers in Brazil, as also in Europe. Furthermore, at some conditions, over-stoichiometric ammonia availability is also needed that increases the NH3 slips even more. Ammonia (NH3) by this vehicle exhaust aftertreatment system provides a maximum efficiency of NOx removal if a significant amount of NH3 is stored on its catalyst surface. In the other words, the practice shows that slightly less than 100% of the NOx conversion is usually targeted, so that the aqueous urea solution hydrolyzes to NH3 via other species formation, under relatively low temperatures. This paper presents a model based on neural networks integrated with a road vehicle simulator that allows to estimate NH3-slip emission factors for different driving conditions and patterns. The proposed model generates high NH3slips which are not also limited in Brazil, but more efforts needed to be made to elucidate the contribution of vehicle-emitted NH3 to the urban atmosphere.
  • Wind Power Mapping and NPV of Embedded Generation Systems in Nigeria
    Authors: Oluseyi O. Ajayi, Ohiose D. Ohijeagbon, Mercy Ogbonnaya, Ameh Attabo, Keywords: Wind speed, wind power, distributed generation, cost per kilowatt-hour, clean energy, Nigeria. DOI:10.5281/zenodo.1124037 Abstract: The study assessed the potential and economic viability of stand-alone wind systems for embedded generation, taking into account its benefits to small off-grid rural communities at 40 meteorological sites in Nigeria. A specific electric load profile was developed to accommodate communities consisting of 200 homes, a school and a community health centre. This load profile was incorporated within the distributed generation analysis producing energy in the MW range, while optimally meeting daily load demand for the rural communities. Twenty-four years (1987 to 2010) of wind speed data at a height of 10m utilized for the study were sourced from the Nigeria Meteorological Department, Oshodi. The HOMER® software optimizing tool was engaged for the feasibility study and design. Each site was suited to 3MW wind turbines in sets of five, thus 15MW was designed for each site. This design configuration was adopted in order to easily compare the distributed generation system amongst the sites to determine their relative economic viability in terms of life cycle cost, as well as levelised cost of producing energy. A net present value was estimated in terms of life cycle cost for 25 of the 40 meteorological sites. On the other hand, the remaining sites yielded a net present cost; meaning the installations at these locations were not economically viable when utilizing the present tariff regime for embedded generation in Nigeria.
  • A Strategic Sustainability Analysis of Electric Vehicles in EU Today and Towards 2050
    Authors: Sven Borén, Henrik Ny, Keywords: Strategic, electric vehicles, fuel cell, LCA, sustainability. DOI:10.5281/zenodo.1111695 Abstract: Ambitions within the EU for moving towards sustainable transport include major emission reductions for fossil fuel road vehicles, especially for buses, trucks, and cars. The electric driveline seems to be an attractive solution for such development. This study first applied the Framework for Strategic Sustainable Development to compare sustainability effects of today’s fossil fuel vehicles with electric vehicles that have batteries or hydrogen fuel cells. The study then addressed a scenario were electric vehicles might be in majority in Europe by 2050. The methodology called Strategic Lifecycle Assessment was first used, were each life cycle phase was assessed for violations against sustainability principles. This indicates where further analysis could be done in order to quantify the magnitude of each violation, and later to create alternative strategies and actions that lead towards sustainability. A Life Cycle Assessment of combustion engine cars, plug-in hybrid cars, battery electric cars and hydrogen fuel cell cars was then conducted to compare and quantify environmental impacts. The authors found major violations of sustainability principles like use of fossil fuels, which contribute to the increase of emission related impacts such as climate change, acidification, eutrophication, ozone depletion, and particulate matters. Other violations were found, such as use of scarce materials for batteries and fuel cells, and also for most life cycle phases for all vehicles when using fossil fuel vehicles for mining, production and transport. Still, the studied current battery and hydrogen fuel cell cars have less severe violations than fossil fuel cars. The life cycle assessment revealed that fossil fuel cars have overall considerably higher environmental impacts compared to electric cars as long as the latter are powered by renewable electricity. By 2050, there will likely be even more sustainable alternatives than the studied electric vehicles when the EU electricity mix mainly should stem from renewable sources, batteries should be recycled, fuel cells should be a mature technology for use in vehicles (containing no scarce materials), and electric drivelines should have replaced combustion engines in other sectors. An uncertainty for fuel cells in 2050 is whether the production of hydrogen will have had time to switch to renewable resources. If so, that would contribute even more to a sustainable development. Except for being adopted in the GreenCharge roadmap, the authors suggest that the results can contribute to planning in the upcoming decades for a sustainable increase of EVs in Europe, and potentially serve as an inspiration for other smaller or larger regions. Further studies could map the environmental effects in LCA further, and include other road vehicles to get a more precise perception of how much they could affect sustainable development.
  • The Composting Process from a Waste Management Method to a Remediation Procedure
    Authors: G. Petruzzelli, F. Pedron, M. Grifoni, F. Gorini, I. Rosellini, B. Pezzarossa, Keywords: Agriculture, biopile, compost, soil clean-up, waste recycling. DOI:10.5281/zenodo.1093273 Abstract: Composting is a controlled technology to enhance the natural aerobic process of organic wastes degradation. The resulting product is a humified material that is principally recyclable for agricultural purpose. The composting process is one of the most important tools for waste management, by the European Community legislation. In recent years composting has been increasingly used as a remediation technology to remove biodegradable contaminants from soil, and to modulate heavy metals bioavailability in phytoremediation strategies. An optimization in the recovery of resources from wastes through composting could enhance soil fertility and promote its use in the remediation biotechnologies of contaminated soils.
  • Waste Management, Strategies and Situation in South Africa: An Overview
    Authors: Edison Muzenda, Freeman Ntuli, Tsietsi Jefrey Pilusa, Keywords: Cleaner production, demographic factors, environmental quality, integrated waste management, hierarchy, recycling DOI:10.5281/zenodo.1335130 Abstract: This paper highlights some interesting facts on South African-s waste situation and management strategies, in particular the Integrated Waste Management. South Africa supports a waste hierarchy by promoting cleaner production, waste minimisation, reuse, recycling and waste treatment with disposal and remediation as the last preferred options in waste management. The drivers for waste management techniques are identified as increased demand for waste service provision; increased demand for waste minimisation; recycling and recovery; land use, physical and environmental limitations; and socio-economic and demographic factors. The South African government recognizes the importance of scientific research as outlined on the white paper on Integrated Pollution and Waste Management (IP and WM) (DEAT, 2000).
  • Correlations between Cleaning Frequency of Reservoir and Water Tower and Parameters of Water Quality
    Authors: Chen Bi-Hsiang, Yang Hung-Wen, Lou Jie-Chung, Han Jia-Yun, Keywords: cleaning frequency of sanitization, parameters ofwater quality, regression analysis, water reservoir & water tower DOI:10.5281/zenodo.1333348 Abstract: This study was investigated on sampling and analyzing water quality in water reservoir & water tower installed in two kind of residential buildings and school facilities. Data of water quality was collected for correlation analysis with frequency of sanitization of water reservoir through questioning managers of building about the inspection charts recorded on equipment for water reservoir. Statistical software packages (SPSS) were applied to the data of two groups (cleaning frequency and water quality) for regression analysis to determine the optimal cleaning frequency of sanitization. The correlation coefficient (R) in this paper represented the degree of correlation, with values of R ranging from +1 to -1.After investigating three categories of drinking water users; this study found that the frequency of sanitization of water reservoir significantly influenced the water quality of drinking water. A higher frequency of sanitization (more than four times per 1 year) implied a higher quality of drinking water. Results indicated that sanitizing water reservoir & water tower should at least twice annually for achieving the aim of safety of drinking water.
  • “Magnetic Cleansing” for the Provision of a ‘Quick Clean’ to Oiled Wildlife
    Authors: Lawrence N. Ngeh, John D. Orbell, Stephen W. Bigger, Kasup Munaweera, Peter Dann, Keywords: Magnetic Particles, Oiled Wildlife, Quick Clean, Wildlife Rehabilitation. DOI:10.5281/zenodo.1330799 Abstract: This research is part of a broad program aimed at advancing the science and technology involved in the rescue and rehabilitation of oiled wildlife. One aspect of this research involves the use of oil-sequestering magnetic particles for the removal of contaminants from plumage – so-called “magnetic cleansing". This treatment offers a number of advantages over conventional detergent-based methods including portability - which offers the possibility of providing a “quick clean" to the animal upon first encounter in the field. This could be particularly advantageous when the contaminant is toxic and/or corrosive and/or where there is a delay in transporting the victim to a treatment centre. The method could also be useful as part of a stabilization protocol when large numbers of affected animals are awaiting treatment. This presentation describes the design, development and testing of a prototype field kit for providing a “quick clean" to contaminated wildlife in the field.
  • Evaluating Alternative Fuel Vehicles from Technical, Environmental and Economic Perspectives: Case of Light-Duty Vehicles in Iran
    Authors: Vahid Aryanpur, Ehsan Shafiei, Keywords: Well-to-Wheel analysis, Energy Efficiency, GHG emissions, Levelized cost of energy, Alternative fuel vehicles. DOI:10.5281/zenodo.1058769 Abstract: This paper presents an environmental and technoeconomic evaluation of light duty vehicles in Iran. A comprehensive well-to-wheel (WTW) analysis is applied to compare different automotive fuel chains, conventional internal combustion engines and innovative vehicle powertrains. The study examines the competitiveness of 15 various pathways in terms of energy efficiencies, GHG emissions, and levelized cost of different energy carriers. The results indicate that electric vehicles including battery electric vehicles (BEV), fuel cell vehicles (FCV) and plug-in hybrid electric vehicles (PHEV) increase the WTW energy efficiency by 54%, 51% and 46%, respectively, compared to common internal combustion engines powered by gasoline. On the other hand, greenhouse gas (GHG) emissions per kilometer of FCV and BEV would be 48% lower than that of gasoline engines. It is concluded that BEV has the lowest total cost of energy consumption and external cost of emission, followed by internal combustion engines (ICE) fueled by CNG. Conventional internal combustion engines fueled by gasoline, on the other hand, would have the highest costs.

Conferences by Location