AUTOMOTIVE CONFERENCE


Automotive Conference is one of the leading research topics in the international research conference domain. Automotive is a conference track under the Transport and Environment Conference which aims to bring together leading academic scientists, researchers and research scholars to exchange and share their experiences and research results on all aspects of Transport and Environment.

internationalconference.net provides a premier interdisciplinary platform for researchers, practitioners and educators to present and discuss the most recent innovations, trends, and concerns as well as practical challenges encountered and solutions adopted in the fields of (Transport and Environment).

Automotive is not just a call for academic papers on the topic; it can also include a conference, event, symposium, scientific meeting, academic, or workshop.

You are welcome to SUBMIT your research paper or manuscript to Automotive Conference Track will be held at .

Automotive is also a leading research topic on Google Scholar, Semantic Scholar, Zenedo, OpenAIRE, BASE, WorldCAT, Sherpa/RoMEO, Elsevier, Scopus, Web of Science.

FINISHED

I. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

MARCH 19 - 20, 2019
ISTANBUL, TURKEY

FINISHED

III. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

AUGUST 21 - 22, 2019
LONDON, UNITED KINGDOM

FINISHED

IV. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

OCTOBER 08 - 09, 2019
NEW YORK, UNITED STATES

FINISHED

V. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

DECEMBER 12 - 13, 2019
ROME, ITALY

FINISHED

VI. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

FEBRUARY 13 - 14, 2020
LONDON, UNITED KINGDOM

FINISHED

VII. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

APRIL 15 - 16, 2020
BARCELONA, SPAIN

FINISHED

VIII. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

MAY 11 - 12, 2020
ISTANBUL, TURKEY

FINISHED

IX. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

JUNE 05 - 06, 2020
SAN FRANCISCO, UNITED STATES

FINISHED

X. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

JULY 20 - 21, 2020
PARIS, FRANCE

FINISHED

XI. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

AUGUST 10 - 11, 2020
NEW YORK, UNITED STATES

FINISHED

XII. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

SEPTEMBER 10 - 11, 2020
TOKYO, JAPAN

FINISHED

XIII. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

SEPTEMBER 16 - 17, 2020
ZÜRICH, SWITZERLAND

FINISHED

XIV. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

OCTOBER 21 - 22, 2020
BARCELONA, SPAIN

FINISHED

XV. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

NOVEMBER 02 - 03, 2020
SAN FRANCISCO, UNITED STATES

FINISHED

XVI. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

NOVEMBER 12 - 13, 2020
ISTANBUL, TURKEY

FINISHED

XVII. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

NOVEMBER 19 - 20, 2020
SINGAPORE, SINGAPORE

FINISHED

XVIII. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

DECEMBER 15 - 16, 2020
BANGKOK, THAILAND

FINISHED

XIX. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

DECEMBER 28 - 29, 2020
PARIS, FRANCE

FINISHED

XX. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

FEBRUARY 13 - 14, 2021
LONDON, UNITED KINGDOM

FINISHED

XXI. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

APRIL 15 - 16, 2021
BARCELONA, SPAIN

FINISHED

XXII. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

MAY 11 - 12, 2021
ISTANBUL, TURKEY

FINISHED

XXIII. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

JUNE 05 - 06, 2021
SAN FRANCISCO, UNITED STATES

FINISHED

XXIV. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

JULY 20 - 21, 2021
PARIS, FRANCE

FINISHED

XXV. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

AUGUST 10 - 11, 2021
NEW YORK, UNITED STATES

FINISHED

XXVI. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

SEPTEMBER 10 - 11, 2021
TOKYO, JAPAN

FINISHED

XXVII. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

SEPTEMBER 16 - 17, 2021
ZÜRICH, SWITZERLAND

FINISHED

XXVIII. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

OCTOBER 21 - 22, 2021
BARCELONA, SPAIN

FINISHED

XXIX. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

NOVEMBER 02 - 03, 2021
SAN FRANCISCO, UNITED STATES

FINISHED

XXX. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

NOVEMBER 12 - 13, 2021
ISTANBUL, TURKEY

FINISHED

XXXI. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

NOVEMBER 19 - 20, 2021
SINGAPORE, SINGAPORE

FINISHED

XXXII. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

DECEMBER 15 - 16, 2021
BANGKOK, THAILAND

FINISHED

XXXIII. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

DECEMBER 28 - 29, 2021
PARIS, FRANCE

Transport and Environment Conference Call For Papers are listed below:

Previously Published Papers on "Automotive Conference"

  • Estimation of Exhaust and Non-Exhaust Particulate Matter Emissions’ Share from On-Road Vehicles in Addis Ababa City
    Authors: Solomon Neway Jida, Jean-Francois Hetet, Pascal Chesse, Keywords: Addis Ababa, automotive emission, emission estimation, particulate matters. DOI:10.5281/zenodo. Abstract: Vehicular emission is the key source of air pollution in the urban environment. This includes both fine particles (PM2.5) and coarse particulate matters (PM10). However, particulate matter emissions from road traffic comprise emissions from exhaust tailpipe and emissions due to wear and tear of the vehicle part such as brake, tire and clutch and re-suspension of dust (non-exhaust emission). This study estimates the share of the two sources of pollutant particle emissions from on-roadside vehicles in the Addis Ababa municipality, Ethiopia. To calculate its share, two methods were applied; the exhaust-tailpipe emissions were calculated using the Europeans emission inventory Tier II method and Tier I for the non-exhaust emissions (like vehicle tire wear, brake, and road surface wear). The results show that of the total traffic-related particulate emissions in the city, 63% emitted from vehicle exhaust and the remaining 37% from non-exhaust sources. The annual roads transport exhaust emission shares around 2394 tons of particles from all vehicle categories. However, from the total yearly non-exhaust particulate matter emissions’ contribution, tire and brake wear shared around 65% and 35% emanated by road-surface wear. Furthermore, vehicle tire and brake wear were responsible for annual 584.8 tons of coarse particles (PM10) and 314.4 tons of fine particle matter (PM2.5) emissions in the city whereas surface wear emissions were responsible for around 313.7 tons of PM10 and 169.9 tons of PM2.5 pollutant emissions in the city. This suggests that non-exhaust sources might be as significant as exhaust sources and have a considerable contribution to the impact on air quality.
  • A Review on the Outlook of the Circular Economy in the Automotive Industry
    Authors: A. Buruzs, A. Torma, Keywords: Automotive industry, circular economy, international requirements, natural resources. DOI:10.5281/zenodo.1316081 Abstract: The relationship of the automotive industry with raw material supply is a major challenge and presents obstacles. Automobiles are ones of the most complex products using a large variety of materials. Safety, eco-friendliness and comfort requirements, physical, chemical and economic limitations set the framework in which this industry continuously optimizes the efficient and responsible use of resources. The concept of circular economy covers the issues of waste generation, resource scarcity and economic advantages. However, circularity is already known for the automobile industry – several efforts are done to foster material reuse, product remanufacturing and recycling. The aim of this study is to give an overview on how the producers comply with the growing demands on one hand, and gain efficiency and increase profitability on the other hand from circular economy.
  • A Metallography Study of Secondary A226 Aluminium Alloy Used in Automotive Industries
    Authors: Lenka Hurtalová, Eva Tillová, Mária Chalupová, Juraj Belan, Milan Uhríčik, Keywords: A226 secondary aluminium alloy, deep etching, mechanical properties, recycling foundry aluminium alloy. DOI:10.5281/zenodo.1106561 Abstract: The secondary alloy A226 is used for many automotive casting produced by mould casting and high pressure die casting. This alloy has excellent castability, good mechanical properties and cost-effectiveness. Production of primary aluminium alloys belong to heavy source fouling of life environs. The European Union calls for the emission reduction and reduction in energy consumption therefore increase production of recycled (secondary) aluminium cast alloys. The contribution is deal with influence of recycling on the quality of the casting made from A226 in automotive industry. The properties of the casting made from secondary aluminium alloys were compared with the required properties of primary aluminium alloys. The effect of recycling on microstructure was observed using combination different analytical techniques (light microscopy upon black-white etching, scanning electron microscopy - SEM upon deep etching and energy dispersive X-ray analysis - EDX). These techniques were used for the identification of the various structure parameters, which was used to compare secondary alloy microstructure with primary alloy microstructure.
  • Fuzzy Based Environmental System Approach for Impact Assessment - Case Studies
    Authors: Marius Pislaru, Alexandru F. Trandabat, Keywords: fuzzy approach, environmental impact assessment, sustainability DOI:10.5281/zenodo.1078996 Abstract: Environmental studies have expanded dramatically all over the world in the past few years. Nowadays businesses interact with society and the environment in ways that put their mark on both sides. Efforts improving human standard living, through the control of nature and the development of new products, have also resulted in contamination of the environment. Consequently companies play an important role in environmental sustainability of a region or country. Therefore we can say that a company's sustainable development is strictly dependent on the environment. This article presents a fuzzy model to evaluate a company's environmental impact. Article illustrates an example of the automotive industry in order to prove the usefulness of using such a model.
  • Utilization of Agro-Industrial Waste in Metal Matrix Composites: Towards Sustainability
    Authors: L. Lancaster, M. H. Lung, D. Sujan, Keywords: Bond layer, Interfacial shear stress, Bi-layered assembly, Thermal mismatch, Flip Chip Ball Grid Array. DOI:10.5281/zenodo.1071536 Abstract: The application of agro-industrial waste in Aluminum Metal Matrix Composites has been getting more attention as they can reinforce particles in metal matrix which enhance the strength properties of the composites. In addition, by applying these agroindustrial wastes in useful way not only save the manufacturing cost of products but also reduce the pollutions on environment. This paper represents a literature review on a range of industrial wastes and their utilization in metal matrix composites. The paper describes the synthesis methods of agro-industrial waste filled metal matrix composite materials and their mechanical, wear, corrosion, and physical properties. It also highlights the current application and future potential of agro-industrial waste reinforced composites in aerospace, automotive and other construction industries.
  • Evaluating Alternative Fuel Vehicles from Technical, Environmental and Economic Perspectives: Case of Light-Duty Vehicles in Iran
    Authors: Vahid Aryanpur, Ehsan Shafiei, Keywords: Well-to-Wheel analysis, Energy Efficiency, GHG emissions, Levelized cost of energy, Alternative fuel vehicles. DOI:10.5281/zenodo.1058769 Abstract: This paper presents an environmental and technoeconomic evaluation of light duty vehicles in Iran. A comprehensive well-to-wheel (WTW) analysis is applied to compare different automotive fuel chains, conventional internal combustion engines and innovative vehicle powertrains. The study examines the competitiveness of 15 various pathways in terms of energy efficiencies, GHG emissions, and levelized cost of different energy carriers. The results indicate that electric vehicles including battery electric vehicles (BEV), fuel cell vehicles (FCV) and plug-in hybrid electric vehicles (PHEV) increase the WTW energy efficiency by 54%, 51% and 46%, respectively, compared to common internal combustion engines powered by gasoline. On the other hand, greenhouse gas (GHG) emissions per kilometer of FCV and BEV would be 48% lower than that of gasoline engines. It is concluded that BEV has the lowest total cost of energy consumption and external cost of emission, followed by internal combustion engines (ICE) fueled by CNG. Conventional internal combustion engines fueled by gasoline, on the other hand, would have the highest costs.

Conferences by Location