REALTIME TRAVEL INFORMATION CONFERENCE


Realtime Travel Information Conference is one of the leading research topics in the international research conference domain. Realtime Travel Information is a conference track under the Transport and Environment Conference which aims to bring together leading academic scientists, researchers and research scholars to exchange and share their experiences and research results on all aspects of Transport and Environment.

internationalconference.net provides a premier interdisciplinary platform for researchers, practitioners and educators to present and discuss the most recent innovations, trends, and concerns as well as practical challenges encountered and solutions adopted in the fields of (Transport and Environment).

Realtime Travel Information is not just a call for academic papers on the topic; it can also include a conference, event, symposium, scientific meeting, academic, or workshop.

You are welcome to SUBMIT your research paper or manuscript to Realtime Travel Information Conference Track will be held at .

Realtime Travel Information is also a leading research topic on Google Scholar, Semantic Scholar, Zenedo, OpenAIRE, BASE, WorldCAT, Sherpa/RoMEO, Elsevier, Scopus, Web of Science.

FINISHED

I. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

MARCH 19 - 20, 2019
ISTANBUL, TURKEY

FINISHED

III. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

AUGUST 21 - 22, 2019
LONDON, UNITED KINGDOM

FINISHED

IV. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

OCTOBER 08 - 09, 2019
NEW YORK, UNITED STATES

FINISHED

V. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

DECEMBER 12 - 13, 2019
ROME, ITALY

FINISHED

VI. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

FEBRUARY 13 - 14, 2020
LONDON, UNITED KINGDOM

FINISHED

VII. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

APRIL 15 - 16, 2020
BARCELONA, SPAIN

FINISHED

VIII. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

MAY 11 - 12, 2020
ISTANBUL, TURKEY

FINISHED

IX. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

JUNE 05 - 06, 2020
SAN FRANCISCO, UNITED STATES

FINISHED

X. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

JULY 20 - 21, 2020
PARIS, FRANCE

FINISHED

XI. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

AUGUST 10 - 11, 2020
NEW YORK, UNITED STATES

FINISHED

XII. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

SEPTEMBER 10 - 11, 2020
TOKYO, JAPAN

FINISHED

XIII. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

SEPTEMBER 16 - 17, 2020
ZÜRICH, SWITZERLAND

FINISHED

XIV. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

OCTOBER 21 - 22, 2020
BARCELONA, SPAIN

FINISHED

XV. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

NOVEMBER 02 - 03, 2020
SAN FRANCISCO, UNITED STATES

FINISHED

XVI. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

NOVEMBER 12 - 13, 2020
ISTANBUL, TURKEY

FINISHED

XVII. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

NOVEMBER 19 - 20, 2020
SINGAPORE, SINGAPORE

FINISHED

XVIII. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

DECEMBER 15 - 16, 2020
BANGKOK, THAILAND

FINISHED

XIX. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

DECEMBER 28 - 29, 2020
PARIS, FRANCE

FINISHED

XX. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

FEBRUARY 13 - 14, 2021
LONDON, UNITED KINGDOM

FINISHED

XXI. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

APRIL 15 - 16, 2021
BARCELONA, SPAIN

FINISHED

XXII. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

MAY 11 - 12, 2021
ISTANBUL, TURKEY

FINISHED

XXIII. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

JUNE 05 - 06, 2021
SAN FRANCISCO, UNITED STATES

FINISHED

XXIV. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

JULY 20 - 21, 2021
PARIS, FRANCE

FINISHED

XXV. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

AUGUST 10 - 11, 2021
NEW YORK, UNITED STATES

FINISHED

XXVI. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

SEPTEMBER 10 - 11, 2021
TOKYO, JAPAN

FINISHED

XXVII. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

SEPTEMBER 16 - 17, 2021
ZÜRICH, SWITZERLAND

FINISHED

XXVIII. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

OCTOBER 21 - 22, 2021
BARCELONA, SPAIN

FINISHED

XXIX. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

NOVEMBER 02 - 03, 2021
SAN FRANCISCO, UNITED STATES

FINISHED

XXX. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

NOVEMBER 12 - 13, 2021
ISTANBUL, TURKEY

FINISHED

XXXI. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

NOVEMBER 19 - 20, 2021
SINGAPORE, SINGAPORE

FINISHED

XXXII. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

DECEMBER 15 - 16, 2021
BANGKOK, THAILAND

FINISHED

XXXIII. INTERNATIONAL TRANSPORT AND ENVIRONMENT CONFERENCE

DECEMBER 28 - 29, 2021
PARIS, FRANCE

Transport and Environment Conference Call For Papers are listed below:

Previously Published Papers on "Realtime Travel Information Conference"

  • Awareness Level of Green Computing among Computer Users in Kebbi State, Nigeria
    Authors: A. Mubarak, A. I. Augie, Keywords: Green computing, awareness, information technology, Energy Star. DOI:10.5281/zenodo. Abstract: This study investigated the awareness level of green computing possessed by computer users in Kebbi state. Survey method was employed to carry out the study. The study involved computer users from ICT business/training centers around Argungu and Birnin Kebbi areas of Kebbi state. Purposive sampling method was used to draw 156 respondents that volunteer to answer the questionnaire administered for gathering the data of the study. Out of the 156 questionnaires distributed, 121 were used for data analysis. In all, 79 respondents were from Argungu, while 42 were from Birnin Kebbi. The two research questions of the study were answered with descriptive statistic (percentage), and inferential statistics (ANOVA). The findings showed that the most of the computer users do not possess adequate awareness on conscious use of computing system. Also, the study showed that there is no significant difference regarding the consciousness of green computing possesses among computer users in Argungu and Birnin Kebbi. Based on these findings, the study suggested among others an aggressive campaign on green computing practice among computer users in Kebbi state.
  • Methodology of the Turkey’s National Geographic Information System Integration Project
    Authors: Buse A. Ataç, Doğan K. Cenan, Arda Çetinkaya, Naz D. Şahin, Köksal Sanlı, Zeynep Koç, Akın Kısa, Keywords: Data specification, geoportal, GIS, INSPIRE, TUCBS, Turkey’s National Geographic Information System. DOI:10.5281/zenodo. Abstract: With its spatial data reliability, interpretation and questioning capabilities, Geographical Information Systems make significant contributions to scientists, planners and practitioners. Geographic information systems have received great attention in today's digital world, growing rapidly, and increasing the efficiency of use. Access to and use of current and accurate geographical data, which are the most important components of the Geographical Information System, has become a necessity rather than a need for sustainable and economic development. This project aims to enable sharing of data collected by public institutions and organizations on a web-based platform. Within the scope of the project, INSPIRE (Infrastructure for Spatial Information in the European Community) data specifications are considered as a road-map. In this context, Turkey's National Geographic Information System (TUCBS) Integration Project supports sharing spatial data within 61 pilot public institutions as complied with defined national standards. In this paper, which is prepared by the project team members in the TUCBS Integration Project, the technical process with a detailed methodology is explained. In this context, the main technical processes of the Project consist of Geographic Data Analysis, Geographic Data Harmonization (Standardization), Web Service Creation (WMS, WFS) and Metadata Creation-Publication. In this paper, the integration process carried out to provide the data produced by 61 institutions to be shared from the National Geographic Data Portal (GEOPORTAL), have been trying to be conveyed with a detailed methodology.
  • Sustainable Geographic Information System-Based Map for Suitable Landfill Sites in Aley and Chouf, Lebanon
    Authors: Allaw Kamel, Bazzi Hasan, Keywords: Sustainable development, landfill, municipal solid waste, geographic information system, GIS, multi criteria decision analysis, environmentally sensitive area. DOI:10.5281/zenodo.1317294 Abstract: Municipal solid waste (MSW) generation is among the most significant sources which threaten the global environmental health. Solid Waste Management has been an important environmental problem in developing countries because of the difficulties in finding sustainable solutions for solid wastes. Therefore, more efforts are needed to be implemented to overcome this problem. Lebanon has suffered a severe solid waste management problem in 2015, and a new landfill site was proposed to solve the existing problem. The study aims to identify and locate the most suitable area to construct a landfill taking into consideration the sustainable development to overcome the present situation and protect the future demands. Throughout the article, a landfill site selection methodology was discussed using Geographic Information System (GIS) and Multi Criteria Decision Analysis (MCDA). Several environmental, economic and social factors were taken as criterion for selection of a landfill. Soil, geology, and LUC (Land Use and Land Cover) indices with the Sustainable Development Index were main inputs to create the final map of Environmentally Sensitive Area (ESA) for landfill site. Different factors were determined to define each index. Input data of each factor was managed, visualized and analyzed using GIS. GIS was used as an important tool to identify suitable areas for landfill. Spatial Analysis (SA), Analysis and Management GIS tools were implemented to produce input maps capable of identifying suitable areas related to each index. Weight has been assigned to each factor in the same index, and the main weights were assigned to each index used. The combination of the different indices map generates the final output map of ESA. The output map was reclassified into three suitability classes of low, moderate, and high suitability. Results showed different locations suitable for the construction of a landfill. Results also reflected the importance of GIS and MCDA in helping decision makers finding a solution of solid wastes by a sanitary landfill.
  • Surface Elevation Dynamics Assessment Using Digital Elevation Models, Light Detection and Ranging, GPS and Geospatial Information Science Analysis: Ecosystem Modelling Approach
    Authors: Ali K. M. Al-Nasrawi, Uday A. Al-Hamdany, Sarah M. Hamylton, Brian G. Jones, Yasir M. Alyazichi, Keywords: DEMs, eco-geomorphic-dynamic processes, geospatial information science. Remote sensing, surface elevation changes. DOI:10.5281/zenodo.1132751 Abstract: Surface elevation dynamics have always responded to disturbance regimes. Creating Digital Elevation Models (DEMs) to detect surface dynamics has led to the development of several methods, devices and data clouds. DEMs can provide accurate and quick results with cost efficiency, in comparison to the inherited geomatics survey techniques. Nowadays, remote sensing datasets have become a primary source to create DEMs, including LiDAR point clouds with GIS analytic tools. However, these data need to be tested for error detection and correction. This paper evaluates various DEMs from different data sources over time for Apple Orchard Island, a coastal site in southeastern Australia, in order to detect surface dynamics. Subsequently, 30 chosen locations were examined in the field to test the error of the DEMs surface detection using high resolution global positioning systems (GPSs). Results show significant surface elevation changes on Apple Orchard Island. Accretion occurred on most of the island while surface elevation loss due to erosion is limited to the northern and southern parts. Concurrently, the projected differential correction and validation method aimed to identify errors in the dataset. The resultant DEMs demonstrated a small error ratio (≤ 3%) from the gathered datasets when compared with the fieldwork survey using RTK-GPS. As modern modelling approaches need to become more effective and accurate, applying several tools to create different DEMs on a multi-temporal scale would allow easy predictions in time-cost-frames with more comprehensive coverage and greater accuracy. With a DEM technique for the eco-geomorphic context, such insights about the ecosystem dynamic detection, at such a coastal intertidal system, would be valuable to assess the accuracy of the predicted eco-geomorphic risk for the conservation management sustainability. Demonstrating this framework to evaluate the historical and current anthropogenic and environmental stressors on coastal surface elevation dynamism could be profitably applied worldwide.
  • Determination of Potential Agricultural Lands Using Landsat 8 OLI Images and GIS: Case Study of Gokceada (Imroz) Turkey
    Authors: Rahmi Kafadar, Levent Genc, Keywords: Digital Elevation Model (DEM), Geographic Information Systems (GIS), LANDSAT 8 OLI-TIRS, Land Use Land Cover (LULC). DOI:10.5281/zenodo.1107363 Abstract: In present study, it was aimed to determine potential agricultural lands (PALs) in Gokceada (Imroz) Island of Canakkale province, Turkey. Seven-band Landsat 8 OLI images acquired on July 12 and August 13, 2013, and their 14-band combination image were used to identify current Land Use Land Cover (LULC) status. Principal Component Analysis (PCA) was applied to three Landsat datasets in order to reduce the correlation between the bands. A total of six Original and PCA images were classified using supervised classification method to obtain the LULC maps including 6 main classes (“Forest”, “Agriculture”, “Water Surface”, “Residential Area- Bare Soil”, “Reforestation” and “Other”). Accuracy assessment was performed by checking the accuracy of 120 randomized points for each LULC maps. The best overall accuracy and Kappa statistic values (90.83%, 0.8791% respectively) were found for PCA images which were generated from 14-bands combined images called 3- B/JA. Digital Elevation Model (DEM) with 15 m spatial resolution (ASTER) was used to consider topographical characteristics. Soil properties were obtained by digitizing 1:25000 scaled soil maps of Rural Services Directorate General. Potential Agricultural Lands (PALs) were determined using Geographic information Systems (GIS). Procedure was applied considering that “Other” class of LULC map may be used for agricultural purposes in the future properties. Overlaying analysis was conducted using Slope (S), Land Use Capability Class (LUCC), Other Soil Properties (OSP) and Land Use Capability Sub-Class (SUBC) properties. A total of 901.62 ha areas within “Other” class (15798.2 ha) of LULC map were determined as PALs. These lands were ranked as “Very Suitable”, “Suitable”, “Moderate Suitable” and “Low Suitable”. It was determined that the 8.03 ha were classified as “Very Suitable” while 18.59 ha as suitable and 11.44 ha as “Moderate Suitable” for PALs. In addition, 756.56 ha were found to be “Low Suitable”. The results obtained from this preliminary study can serve as basis for further studies.
  • Towards Improved Public Information on Industrial Emissions in Italy: Concepts and Specific Issues Associated to the Italian Experience in IPPC Permit Licensing
    Authors: Mazziotti Gomez de Teran C., Fiore D., Cola B., Fardelli A., Keywords: Public information, emissions into atmosphere, IPPC permits, territorial information systems. DOI:10.5281/zenodo.1099348 Abstract: The present paper summarizes the analysis of the request for consultation of information and data on industrial emissions made publicly available on the web site of the Ministry of Environment, Land and Sea on integrated pollution prevention and control from large industrial installations, the so called “AIA Portal”. As a matter of fact, a huge amount of information on national industrial plants is already available on internet, although it is usually proposed as textual documentation or images. Thus, it is not possible to access all the relevant information through interoperability systems and also to retrieval relevant information for decision making purposes as well as rising of awareness on environmental issue. Moreover, since in Italy the number of institutional and private subjects involved in the management of the public information on industrial emissions is substantial, the access to the information is provided on internet web sites according to different criteria; thus, at present it is not structurally homogeneous and comparable. To overcome the mentioned difficulties in the case of the Coordinating Committee for the implementation of the Agreement for the industrial area in Taranto and Statte, operating before the IPPC permit granting procedures of the relevant installation located in the area, a big effort was devoted to elaborate and to validate data and information on characterization of soil, ground water aquifer and coastal sea at disposal of different subjects to derive a global perspective for decision making purposes. Thus, the present paper also focuses on main outcomes matured during such experience.
  • A Review on Stormwater Harvesting and Reuse
    Authors: Fatema Akram, Mohammad G. Rasul, M. Masud K. Khan, M. Sharif I. I. Amir, Keywords: Stormwater Management, Stormwater Harvesting and Reuse, Numerical Modeling, Geographic Information System (GIS), Decision Support System (DSS), Database. DOI:10.5281/zenodo.1091578 Abstract: Australia is a country of some 7,700 million square kilometers with a population of about 22.6 million. At present water security is a major challenge for Australia. In some areas the use of water resources is approaching and in some parts it is exceeding the limits of sustainability. A focal point of proposed national water conservation programs is the recycling of both urban stormwater and treated wastewater. But till now it is not widely practiced in Australia, and particularly stormwater is neglected. In Australia, only 4% of stormwater and rainwater is recycled, whereas less than 1% of reclaimed wastewater is reused within urban areas. Therefore, accurately monitoring, assessing and predicting the availability, quality and use of this precious resource are required for better management. As stormwater is usually of better quality than untreated sewage or industrial discharge, it has better public acceptance for recycling and reuse, particularly for non-potable use such as irrigation, watering lawns, gardens, etc. Existing stormwater recycling practice is far behind of research and no robust technologies developed for this purpose. Therefore, there is a clear need for using modern technologies for assessing feasibility of stormwater harvesting and reuse. Numerical modeling has, in recent times, become a popular tool for doing this job. It includes complex hydrological and hydraulic processes of the study area. The hydrologic model computes stormwater quantity to design the system components, and the hydraulic model helps to route the flow through stormwater infrastructures. Nowadays water quality module is incorporated with these models. Integration of Geographic Information System (GIS) with these models provides extra advantage of managing spatial information. However for the overall management of a stormwater harvesting project, Decision Support System (DSS) plays an important role incorporating database with model and GIS for the proper management of temporal information. Additionally DSS includes evaluation tools and Graphical user interface. This research aims to critically review and discuss all the aspects of stormwater harvesting and reuse such as available guidelines of stormwater harvesting and reuse, public acceptance of water reuse, the scopes and recommendation for future studies. In addition to these, this paper identifies, understand and address the importance of modern technologies capable of proper management of stormwater harvesting and reuse.
  • Visual Analytics of Higher Order Information for Trajectory Datasets
    Authors: Ye Wang, Ickjai Lee, Keywords: Visual Analytics, Higher Order Information, Trajectory Datasets, Spatio-temporal data. DOI:10.5281/zenodo.1090544 Abstract: Due to the widespread of mobile sensing, there is a strong need to handle trails of moving objects, and trajectories. This paper proposes three visual analytics approaches for higher order information of trajectory datasets based on the higher order Voronoi diagram data structure. Proposed approaches reveal geometrical, topological, and directional information. Experimental resultsdemonstrate the applicability and usefulness of proposed three approaches.
  • Analysis of Meteorological Drought Using Standardized Precipitation Index – A Case Study of Puruliya District, West Bengal, India
    Authors: Moumita Palchaudhuri, Sujata Biswas, Keywords: Standardized Precipitation Index, Meteorological Drought, Geographical Information System, Drought severity. DOI:10.5281/zenodo.1336064 Abstract: Drought is universally acknowledged as a phenomenon associated with scarcity of water. The Standardized Precipitation Index (SPI) expresses the actual rainfall as standardized departure from rainfall probability distribution function. In this study severity and spatial pattern of meteorological drought was analyzed in the Puruliya District, West Bengal, India using multi-temporal SPI. Daily gridded data for the period 1971-2005 from 4 rainfall stations surrounding the study area were collected from IMD, Pune, and used in the analysis. Geographic Information System (GIS) was used to generate drought severity maps for the different time scales and months of the year. Temporal SPI graphs show that the maximum SPI value (extreme drought) occurs in station 3 in the year 1993. Mild and moderate droughts occur in the central portion of the study area. Severe and extreme droughts were mostly found in the northeast, northwest and the southwest part of the region.
  • Implementation of Geo-knowledge Based Geographic Information System for Estimating Earthquake Hazard Potential at a Metropolitan Area, Gwangju, in Korea
    Authors: Chang-Guk Sun, Jin-Soo Shin, Keywords: Earthquake hazard, geo-knowledge, geographic information system, seismic zonation, site period. DOI:10.5281/zenodo.1084908 Abstract: In this study, an inland metropolitan area, Gwangju, in Korea was selected to assess the amplification potential of earthquake motion and provide the information for regional seismic countermeasure. A geographic information system-based expert system was implemented for reliably predicting the spatial geotechnical layers in the entire region of interesting by building a geo-knowledge database. Particularly, the database consists of the existing boring data gathered from the prior geotechnical projects and the surface geo-knowledge data acquired from the site visit. For practical application of the geo-knowledge database to estimate the earthquake hazard potential related to site amplification effects at the study area, seismic zoning maps on geotechnical parameters, such as the bedrock depth and the site period, were created within GIS framework. In addition, seismic zonation of site classification was also performed to determine the site amplification coefficients for seismic design at any site in the study area. KeywordsEarthquake hazard, geo-knowledge, geographic information system, seismic zonation, site period.

Conferences by Location