CANCER NURSING CONFERENCE


Cancer Nursing Conference is one of the leading research topics in the international research conference domain. Cancer Nursing is a conference track under the Nursing Conference which aims to bring together leading academic scientists, researchers and research scholars to exchange and share their experiences and research results on all aspects of Nursing.

internationalconference.net provides a premier interdisciplinary platform for researchers, practitioners and educators to present and discuss the most recent innovations, trends, and concerns as well as practical challenges encountered and solutions adopted in the fields of (Nursing).

Cancer Nursing is not just a call for academic papers on the topic; it can also include a conference, event, symposium, scientific meeting, academic, or workshop.

You are welcome to SUBMIT your research paper or manuscript to Cancer Nursing Conference Track will be held at “Nursing Conference in Rome, Italy in December 2019” - “Nursing Conference in London, United Kingdom in February 2020” - “Nursing Conference in Barcelona, Spain in April 2020” - “Nursing Conference in Istanbul, Turkey in May 2020” - “Nursing Conference in San Francisco, United States in June 2020” - “Nursing Conference in Paris, France in July 2020” - “Nursing Conference in New York, United States in August 2020” - “Nursing Conference in Tokyo, Japan in September 2020” - “Nursing Conference in Zürich, Switzerland in September 2020” - “Nursing Conference in Barcelona, Spain in October 2020” - “Nursing Conference in San Francisco, United States in November 2020” - “Nursing Conference in Istanbul, Turkey in November 2020” - “Nursing Conference in Singapore, Singapore in November 2020” - “Nursing Conference in Bangkok, Thailand in December 2020” - “Nursing Conference in Paris, France in December 2020” .

Cancer Nursing is also a leading research topic on Google Scholar, Semantic Scholar, Zenedo, OpenAIRE, BASE, WorldCAT, Sherpa/RoMEO, Elsevier, Scopus, Web of Science.

V. INTERNATIONAL NURSING CONFERENCE

DECEMBER 12 - 13, 2019
ROME, ITALY

VI. INTERNATIONAL NURSING CONFERENCE

FEBRUARY 13 - 14, 2020
LONDON, UNITED KINGDOM

VII. INTERNATIONAL NURSING CONFERENCE

APRIL 15 - 16, 2020
BARCELONA, SPAIN

VIII. INTERNATIONAL NURSING CONFERENCE

MAY 11 - 12, 2020
ISTANBUL, TURKEY

  • Abstracts/Full-Text Paper Submission Deadline October 31, 2019
  • Notification of Acceptance/Rejection Deadline November 15, 2019
  • Final Paper and Early Bird Registration Deadline April 01, 2020
  • CONFERENCE CODE: 20NC05TR
  • One Time Submission Deadline Reminder

IX. INTERNATIONAL NURSING CONFERENCE

JUNE 04 - 05, 2020
SAN FRANCISCO, UNITED STATES

  • Abstracts/Full-Text Paper Submission Deadline October 31, 2019
  • Notification of Acceptance/Rejection Deadline November 15, 2019
  • Final Paper and Early Bird Registration Deadline May 06, 2020
  • CONFERENCE CODE: 20NC06US
  • One Time Submission Deadline Reminder

X. INTERNATIONAL NURSING CONFERENCE

JULY 20 - 21, 2020
PARIS, FRANCE

  • Abstracts/Full-Text Paper Submission Deadline October 31, 2019
  • Notification of Acceptance/Rejection Deadline November 15, 2019
  • Final Paper and Early Bird Registration Deadline June 19, 2020
  • CONFERENCE CODE: 20NC07FR
  • One Time Submission Deadline Reminder

XI. INTERNATIONAL NURSING CONFERENCE

AUGUST 10 - 11, 2020
NEW YORK, UNITED STATES

  • Abstracts/Full-Text Paper Submission Deadline October 31, 2019
  • Notification of Acceptance/Rejection Deadline November 15, 2019
  • Final Paper and Early Bird Registration Deadline July 10, 2020
  • CONFERENCE CODE: 20NC08US
  • One Time Submission Deadline Reminder

XII. INTERNATIONAL NURSING CONFERENCE

SEPTEMBER 10 - 11, 2020
TOKYO, JAPAN

  • Abstracts/Full-Text Paper Submission Deadline October 31, 2019
  • Notification of Acceptance/Rejection Deadline November 15, 2019
  • Final Paper and Early Bird Registration Deadline August 10, 2020
  • CONFERENCE CODE: 20NC09JP
  • One Time Submission Deadline Reminder

XIII. INTERNATIONAL NURSING CONFERENCE

SEPTEMBER 17 - 18, 2020
ZÜRICH, SWITZERLAND

  • Abstracts/Full-Text Paper Submission Deadline October 31, 2019
  • Notification of Acceptance/Rejection Deadline November 15, 2019
  • Final Paper and Early Bird Registration Deadline August 17, 2020
  • CONFERENCE CODE: 20NC09CH
  • One Time Submission Deadline Reminder

XIV. INTERNATIONAL NURSING CONFERENCE

OCTOBER 22 - 23, 2020
BARCELONA, SPAIN

  • Abstracts/Full-Text Paper Submission Deadline October 31, 2019
  • Notification of Acceptance/Rejection Deadline November 15, 2019
  • Final Paper and Early Bird Registration Deadline September 22, 2020
  • CONFERENCE CODE: 20NC10ES
  • One Time Submission Deadline Reminder

XV. INTERNATIONAL NURSING CONFERENCE

NOVEMBER 05 - 06, 2020
SAN FRANCISCO, UNITED STATES

  • Abstracts/Full-Text Paper Submission Deadline October 31, 2019
  • Notification of Acceptance/Rejection Deadline November 15, 2019
  • Final Paper and Early Bird Registration Deadline October 05, 2020
  • CONFERENCE CODE: 20NC11US
  • One Time Submission Deadline Reminder

XVI. INTERNATIONAL NURSING CONFERENCE

NOVEMBER 05 - 06, 2020
ISTANBUL, TURKEY

  • Abstracts/Full-Text Paper Submission Deadline October 31, 2019
  • Notification of Acceptance/Rejection Deadline November 15, 2019
  • Final Paper and Early Bird Registration Deadline October 05, 2020
  • CONFERENCE CODE: 20NC11TR
  • One Time Submission Deadline Reminder

XVII. INTERNATIONAL NURSING CONFERENCE

NOVEMBER 19 - 20, 2020
SINGAPORE, SINGAPORE

  • Abstracts/Full-Text Paper Submission Deadline October 31, 2019
  • Notification of Acceptance/Rejection Deadline November 15, 2019
  • Final Paper and Early Bird Registration Deadline October 19, 2020
  • CONFERENCE CODE: 20NC11SG
  • One Time Submission Deadline Reminder

XVIII. INTERNATIONAL NURSING CONFERENCE

DECEMBER 17 - 18, 2020
BANGKOK, THAILAND

  • Abstracts/Full-Text Paper Submission Deadline October 31, 2019
  • Notification of Acceptance/Rejection Deadline November 15, 2019
  • Final Paper and Early Bird Registration Deadline November 17, 2020
  • CONFERENCE CODE: 20NC12TH
  • One Time Submission Deadline Reminder

XIX. INTERNATIONAL NURSING CONFERENCE

DECEMBER 28 - 29, 2020
PARIS, FRANCE

  • Abstracts/Full-Text Paper Submission Deadline October 31, 2019
  • Notification of Acceptance/Rejection Deadline November 15, 2019
  • Final Paper and Early Bird Registration Deadline November 26, 2020
  • CONFERENCE CODE: 20NC12FR
  • One Time Submission Deadline Reminder
FINISHED

I. INTERNATIONAL NURSING CONFERENCE

MARCH 19 - 20, 2019
ISTANBUL, TURKEY

FINISHED

II. INTERNATIONAL NURSING CONFERENCE

JUNE 26 - 27, 2019
PARIS, FRANCE

FINISHED

III. INTERNATIONAL NURSING CONFERENCE

AUGUST 21 - 22, 2019
LONDON, UNITED KINGDOM

FINISHED

IV. INTERNATIONAL NURSING CONFERENCE

OCTOBER 08 - 09, 2019
NEW YORK, UNITED STATES

Previously Published Papers on "Cancer Nursing Conference"

  • Investigation of the Medical Malpractice Tendency of Student Nurses
    Authors: Serap Torun, Osman Bilgin, Ceylan Bıçkıcı, Keywords: nursing student, medical malpractice, nursing, tendency, patient safety DOI:10.5281/zenodo.3454951 Abstract: Introduction: Medical malpractice can be defined as health workers neglecting the expected standard or intentionally not implementing it, doing it wrong and/or incomplete, not being able to implement the accurate practice due to personal or systemic reasons despite desiring to do it correctly and the condition that causes permanent or temporary damage to the patient as a result. If the training periods in which health workers improve their knowledge and skills are passed efficiently, they are expected to have a low rate of error in their professional lives. Aim: Aim of the study is to determine the medical malpractice tendencies of students studying in nursing department. Material and Methods: This descriptive research has been performed with 454 students who study in 3rd and 4th years in the Nursing Department of the Faculty of Health Sciences in a state university in normal and evening education and go out for clinical practice during the 2017-2018 academic year. The sample consisted of 454 students who agreed to participate in the study. Ethics committee approval, the permission of the institution and the verbal consent of the participants were obtained. In collection of data, ‘Personal Information Form’ developed by the researchers and the Malpractice Tendency Scale (SMT) were used. The data were analyzed using SPSS 20 package program. 0.05 was used as the level of significance. Results: The Cronbach’s alpha internal consistency coefficient of the scale was 0.94 and the total mean value of the scale was 211.69 ± 22.14. The mean age of the participants was 22,08 ± 1,852 years; 165 (36,4%) were male and 288 (63,6%) were female. Their mean General Point Average (GPA) was 2.65 ± 0.454 (min 1.03 - max 3.90). Students' average duration of self study per week was 2.89 ± 3.81 (min 0 - max 30) hours. The mean score (80.73) of the 4th year students in the sub-dimension of Drug and Transfusion Applications was significantly higher than the mean score (79.20) of 3rd year students (p < 0.05). The mean score (81.01) of the Drug and Transfusion Applications sub-dimension of those who willingly chose the profession was higher than the mean score (78.88) of those who chose the profession unwillingly. The mean average score (21.48) of Fallings sub-dimension of students who cared for 3 to 4 patients per day was lower than the mean score (22.41) of those who cared for 5 patients and over daily on average (p < 0.05). Conclusion: As a result of this study, it was concluded that malpractice tendency of nursing students was low, and an inverse relationship was found between the duration of education and malpractice tendency.
  • In vitro Study of Laser Diode Radiation Effect on the Photo-Damage of MCF-7 and MCF-10A Cell Clusters
    Authors: A. Dashti, M. Eskandari, L. Farahmand, P. Parvin, A. Jafargholi, Keywords: Breast cancer, electrospun scaffold, polycaprolacton, laser diode, cancer treatment. DOI:10.5281/zenodo.3298695 Abstract: Breast Cancer is one of the most considerable diseases in the United States and other countries and is the second leading cause of death in women. Common breast cancer treatments would lead to adverse side effects such as loss of hair, nausea, and weakness. These complications arise because these cancer treatments damage some healthy cells while eliminating the cancer cells. In an effort to address these complications, laser radiation was utilized and tested as a targeted cancer treatment for breast cancer. In this regard, tissue engineering approaches are being employed by using an electrospun scaffold in order to facilitate the growth of breast cancer cells. Polycaprolacton (PCL) was used as a material for scaffold fabricating because of its biocompatibility, biodegradability, and supporting cell growth. The specific breast cancer cells have the ability to create a three-dimensional cell cluster due to the spontaneous accumulation of cells in the porosity of the scaffold under some specific conditions. Therefore, we are looking for a higher density of porosity and larger pore size. Fibers showed uniform diameter distribution and final scaffold had optimum characteristics with approximately 40% porosity. The images were taken by SEM and the density and the size of the porosity were determined with the Image. After scaffold preparation, it has cross-linked by glutaraldehyde. Then, it has been washed with glycine and phosphate buffer saline (PBS), in order to neutralize the residual glutaraldehyde. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromidefor (MTT) results have represented approximately 91.13% viability of the scaffolds for cancer cells. In order to create a cluster, Michigan Cancer Foundation-7 (MCF-7, breast cancer cell line) and Michigan Cancer Foundation-10A (MCF-10A, human mammary epithelial cell line) cells were cultured on the scaffold in 24 well plate for five days. Then, we have exposed the cluster to the laser diode 808 nm radiation to investigate the effect of laser on the tumor with different power and time. Under the same conditions, cancer cells lost their viability more than the healthy ones. In conclusion, laser therapy is a viable method to destroy the target cells and has a minimum effect on the healthy tissues and cells and it can improve the other method of cancer treatments limitations.
  • Assessment of Predictive Confounders for the Prevalence of Breast Cancer among Iraqi Population: A Retrospective Study from Baghdad, Iraq
    Authors: Nadia H. Mohammed, Anmar Al-Taie, Fadia H. Al-Sultany, Keywords: Ductal breast cancer, hormone sensitivity, Iraq, risk factors. DOI:10.5281/zenodo.2643856 Abstract: Although breast cancer prevalence continues to increase, mortality has been decreasing as a result of early detection and improvement in adjuvant systemic therapy. Nevertheless, this disease required further efforts to understand and identify the associated potential risk factors that could play a role in the prevalence of this malignancy among Iraqi women. The objective of this study was to assess the perception of certain predictive risk factors on the prevalence of breast cancer types among a sample of Iraqi women diagnosed with breast cancer. This was a retrospective observational study carried out at National Cancer Research Center in College of Medicine, Baghdad University from November 2017 to January 2018. Data of 100 patients with breast cancer whose biopsies examined in the National Cancer Research Center were included in this study. Data were collected to structure a detailed assessment regarding the patients’ demographic, medical and cancer records. The majority of study participants (94%) suffered from ductal breast cancer with mean age 49.57 years. Among those women, 48.9% were obese with body mass index (BMI) 35 kg/m2. 68.1% of them had positive family history of breast cancer and 66% had low parity. 40.4% had stage II ductal breast cancer followed by 25.5% with stage III. It was found that 59.6% and 68.1% had positive oestrogen receptor sensitivity and positive human epidermal growth factor (HER2/neu) receptor sensitivity respectively. In regard to the impact of prediction of certain variables on the incidence of ductal breast cancer, positive family history of breast cancer (P < 0.0001), low parity (P< 0.0001), stage I and II breast cancer (P = 0.02) and positive HER2/neu status (P < 0.0001) were significant predictive factors among the study participants. The results from this study provide relevant evidence for a significant positive and potential association between certain risk factors and the prevalence of breast cancer among Iraqi women.
  • Non-Melanoma Skin Cancer in Ha’il Region in the Kingdom of Saudi Arabia: A Clinicopathological Study
    Authors: Laila Seada, Nouf Al Gharbi, Shaimaa Dawa, Keywords: Non melanoma skin cancer, Hail Region, histopathology, BCC. DOI:10.5281/zenodo.2571910 Abstract: Although skin cancers are prevalent worldwide, it is uncommon in Ha’il region in the Kingdom of Saudi Arabia, mostly non-melanoma sub-type. During a 4-year period from 2014 to 2017, out of a total of 120 cases of skin lesions, 29 non-melanoma cancers were retrieved from histopathology files obtained from King Khalid Hospital. As part of the study, all cases of skin cancer diagnosed during 2014 -2017 have been revised and the clinicopathological data recorded. The results show that Basal cell carcinoma (BCC) was the most common neoplasm (36%), followed by cutaneous lymphomas (mostly mycosis fungoides 25%), squamous cell carcinoma (SCC) (21%) and dermatofibrosarcoma protuberans (DFSP) (11%). Only one case of metastatic carcinoma was recorded. BCC nodular type was the most prevalent, with a mean age 57.6 years and mean size 2.73 cm. SCC was mostly grade 2, with mean size 1.9 cm and an older mean age of 72.3 cm. Increased size of lesion positively correlated with older age (p = 0.001). Non-melanoma skin cancer in Ha’il region is not frequently encountered. BCC is the most frequent followed by cutaneous T-cell lymphomas and SCC. The findings in this study were in accordance with other parts of, but much lower than other parts of the world.
  • Evidence Based Practice for Oral Care in Children
    Authors: T. Turan, Ç. Erdoğan, Keywords: Children, evidence based practice, nursing, oral care. DOI:10.5281/zenodo.2021897 Abstract: As far as is known, general nursing care practices do not include specific evidence-based practices related to oral care in children. This study aimed to evaluate the evidence based nursing practice for oral care in children. This article is planned as a review article by searching the literature in this field. According to all age groups and the oral care in various specific situations located evidence in the literature were examined. It has been determined that the methods and frequency used in oral care practices performed by nurses in clinics differ from one hospital to another. In addition, it is seen that different solutions are used in basic oral care, oral care practices to prevent ventilator-associated pneumonia and evidence-based practice in mucositis management in children. As a result, a standard should be established in oral care practices for children and education for children is recommended.
  • MITOS-RCNN: Mitotic Figure Detection in Breast Cancer Histopathology Images Using Region Based Convolutional Neural Networks
    Authors: Siddhant Rao, Keywords: Object detection, histopathology, breast cancer, mitotic count, deep learning, computer vision. DOI:10.5281/zenodo.1475004 Abstract: Studies estimate that there will be 266,120 new cases of invasive breast cancer and 40,920 breast cancer induced deaths in the year of 2018 alone. Despite the pervasiveness of this affliction, the current process to obtain an accurate breast cancer prognosis is tedious and time consuming. It usually requires a trained pathologist to manually examine histopathological images and identify the features that characterize various cancer severity levels. We propose MITOS-RCNN: a region based convolutional neural network (RCNN) geared for small object detection to accurately grade one of the three factors that characterize tumor belligerence described by the Nottingham Grading System: mitotic count. Other computational approaches to mitotic figure counting and detection do not demonstrate ample recall or precision to be clinically viable. Our models outperformed all previous participants in the ICPR 2012 challenge, the AMIDA 2013 challenge and the MITOS-ATYPIA-14 challenge along with recently published works. Our model achieved an F- measure score of 0.955, a 6.11% improvement in accuracy from the most accurate of the previously proposed models.
  • Grade and Maximum Tumor Dimension as Determinants of Lymphadenectomy in Patients with Endometrioid Endometrial Cancer (EEC)
    Authors: Ali A. Bazzi, Ameer Hamza, Riley O’Hara, Kimberly Kado, Karen H. Hagglund, Lamia Fathallah, Robert T. Morris, Keywords: Endometrial cancer, FIGO grade, lymphadenectomy, tumor size. DOI:10.5281/zenodo.1474801 Abstract: Introduction: Endometrial Cancer is a common gynecologic malignancy primarily treated with complete surgical staging, which may include complete pelvic and para-aortic lymphadenectomy. The role of lymphadenectomy is controversial, especially the intraoperative indications for the procedure. Three factors are important in decision to proceed with lymphadenectomy: Myometrial invasion, maximum tumor dimension, and histology. Many institutions incorporate these criteria in varying degrees in the decision to proceed with lymphadenectomy. This investigation assesses the use of intraoperatively measured MTD with and without pre-operative histologic grade. Methods: This study compared retrospectively EEC patients with intraoperatively measured MTD ≤2 cm to those with MTD >2 cm from January 1, 2002 to August 31, 2017. This assessment compared those with MTD ≤ 2cm with endometrial biopsy (EB) grade 1-2 to patients with MTD > 2cm with EB grade 3. Lymph node metastasis (LNM), recurrence, and survival were compared in these groups. Results: This study reviewed 222 patient cases. In tumors > 2 cm, LNM occurred in 20% cases while in tumors ≤ 2 cm, LNM was found in 6% cases (p=0.04). Recurrence and mean survival based on last follow up visit in these two groups were not statistically different (p=0.78 and 0.36 respectively). Data demonstrated a trend that when combined with preoperative EB International Federation of Gynecology and Obstetrics (FIGO) grade, a higher proportion of patients with EB FIGO Grade 3 and MTD > 2 cm had LNM compared to those with EB FIGO Grade 1-2 and MTD ≤ 2 cm (43% vs, 11%, p=0.06). LNM was found in 15% of cases in which lymphadenectomy was performed based on current practices, whereas if the criteria of EB FIGO 3 and MTD > 2 cm were used the incidence of LNM would have been 44% cases. However, using this criterion, two patients would not have had their nodal metastases detected. Compared to the current practice, the sensitivity and specificity of the proposed criteria would be 60% and 81%, respectively. The PPV and NPV would be 43% and 90%, respectively. Conclusion: The results indicate that MTD combined with EB FIGO grade can detect LNM in a higher proportion of cases when compared to current practice. MTD combined with EB FIGO grade may eliminate the need of frozen section sampling in a substantial number of cases.
  • Absorbed Dose Estimation of 177Lu-DOTATOC in Adenocarcinoma Breast Cancer Bearing Mice
    Authors: S. Zolghadri, M. Mousavi-Daramoroudi, H. Yousefnia, F. Abbasi-Davani, Keywords: Breast cancer, compartmental modeling, 177Lu, dosimetry. DOI:10.5281/zenodo.1474561 Abstract: In this study, the absorbed dose of human organs after injection of 177Lu-DOTATOC was studied based on the biodistribution of the complex in adenocarcinoma breast cancer bearing mice. For this purpose, the biodistribution of the radiolabelled complex was studied and compartmental modeling was applied to calculate the absorbed dose with high precision. As expected, 177Lu-DOTATOC illustrated a notable specific uptake in tumor and pancreas, organs with high level of somatostatin receptor on their surface and the effectiveness of the radio-conjugate for targeting of the breast adenocarcinoma tumors was indicated. The elicited results of modeling were the exponential equations, and those are utilized for obtaining the cumulated activity data by taking their integral. The results also exemplified that non-target absorbed-doses such as the liver, spleen and pancreas were approximately 0.008, 0.004, and 0.039, respectively. While these values were so much lower than target (tumor) absorbed-dose, it seems due to this low toxicity, this complex is a good agent for therapy.
  • An Alternative and Complementary Medicine Method in Vulnerable Pediatric Cancer Patients: Yoga
    Authors: Ç. Erdoğan, T. Turan, Keywords: Cancer treatment, children, nursing, yoga. DOI:10.5281/zenodo.1340595 Abstract: Pediatric cancer patients experience multiple distressing, challenges, physical symptom such as fatigue, pain, sleep disturbance, and balance impairment that continue years after treatment completion. In recent years, yoga is often used in children with cancer to cope with these symptoms. Yoga practice is defined as a unique physical activity that combines physical practice, breath work and mindfulness/meditation. Yoga is an increasingly popular mind-body practice also characterized as a mindfulness mode of exercise. This study aimed to evaluate the impact of yoga intervention of children with cancer. This article planned searching the literature in this field. It has been determined that individualized yoga is feasible and provides benefits for inpatient children, improves health-related quality of life, physical activity levels, physical fitness. After yoga program, children anxiety score decreases significantly. Additionally, individualized yoga is feasible for inpatient children receiving intensive chemotherapy. As a result, yoga is an alternative and complementary medicine that can be safely used in children with cancer.
  • Hypothesis of a Holistic Treatment of Cancer: Crab Method
    Authors: Devasis Ghosh, Keywords: ATF3 dampening, auxin modulation, cancer, platelet activation, serotonin, stress, valproic acid. DOI:10.5281/zenodo.1317336 Abstract: The main hindrance to total cure of cancer is a) the failure to control continued production of cancer cells, b) its sustenance and c) its metastasis. This review study has tried to address this issue of total cancer cure in a more innovative way. A 10-pronged “CRAB METHOD”, a novel holistic scientific approach of Cancer treatment has been hypothesized in this paper. Apart from available Chemotherapy, Radiotherapy and Oncosurgery, (which shall not be discussed here), seven other points of interference and treatment has been suggested, i.e. 1. Efficient stress management. 2. Dampening of ATF3 expression. 3. Selective inhibition of Platelet Activity. 4. Modulation of serotonin production, metabolism and 5HT receptor antagonism. 5. Auxin, its anti-proliferative potential and its modulation. 6. Melatonin supplementation because of its oncostatic properties. 7. HDAC Inhibitors especially valproic acid use due to its apoptotic role in many cancers. If all the above stated seven steps are thoroughly taken care of at the time of initial diagnosis of cancer along with the available treatment modalities of Chemotherapy, Radiotherapy and Oncosurgery, then perhaps, the morbidity and mortality rate of cancer may be greatly reduced.